Geosyntec Consultants

Geosyntec Consultants of NC, P.C. NC License No.: C-3500 and C-295

INTERIM SEEP REMEDIATION SYSTEM PLAN

Chemours Fayetteville Works

Prepared for

The Chemours Company FC, LLC 22828 NC Highway 87

Fayetteville, NC 28306

Prepared by

Geosyntec Consultants of NC, P.C. 2501 Blue Ridge Road, Suite 430 Raleigh, NC 27607

Geosyntec Project Number TR0795

August 31, 2020

TABLE OF CONTENTS

1.	INT	RODUCTION1
	1.1	Background1
	1.2	Seep Characterization1
		1.2.1 Flow Rate
		1.2.2 PFAS Loading Rate
		1.2.3 Water Quality
2.		SIGN AND PLACEMENT PLAN 4
	2.1	Interim Seep Remediation System Approach
	2.2	System Overview
	2.3	Hydraulics
	2.4	Treatment Efficiency
	2.5	Geotechnical and Structural9
	2.6	Resiliency10
	2.7	System Monitoring 12
	2.8	Permits
3.	OPE	ERATION AND MAINTENANCE PLAN 14
	3.1	Overview
	3.2	Commissioning and Startup
	3.3	Inspections and Maintenance
	3.4	GAC Changeouts16
	3.5	Interim Remediation System Optimization
4.	SAN	IPLING AND EFFECTIVENESS PLAN
	4.1	Operational and Performance Monitoring
	4.2	Effectiveness
5.	DOO	CUMENTATION, REPORTING AND MODIFICATION
6.		IEDULE
	6.1	Design, Permit and Construction Schedule
	6.2	Reporting Schedule
7.	REF	ERENCES

LIST OF TABLES

Table 1:Sampling Plan

LIST OF FIGURES

Figure 1:	Site Location Map
Figure 2:	Sample and Flow Measurement Locations – April 2020
Figure 3A:	Seep A and Surrounding Topography
Figure 3B:	Seep B and Surrounding Topography
Figure 3C:	Seep C and Surrounding Topography
Figure 3D:	Seep D and Surrounding Topography

LIST OF APPENDICES

- Appendix A: Seeps A, B, C and D Dry Weather Flow Evaluation
- Appendix B: 30% Design Drawings

G-01: Cover Sheet G-02: Notes and Symbols C-01: Overall Site Plan C-02: Seep C Interim Remediation System – Plan C-03: Seep C Interim Remediation System – Construction Details I C-04: Seep C Interim Remediation System – Construction Details II C-05: Seep C Interim Remediation System – Platform Details D-01: Seep C Interim Remediation System – Process Flow Diagram

Appendix C: Calculations

Hydraulic Calculation Package Structural Calculation Package

LIST OF ACRONYMS AND ABBREVIATIONS

°C	Celsius
AUR	absorbent utilization rate
CO Addendum	Addendum to Consent Order Paragraph 12
CPT	Cone Penetrometer Testing
EBCT	empty bed contact time
E&SC	Erosion and sediment control
FCD	flow control devices
ft MSL	feet mean sea level
GAC	granular activated carbon
gpm	gallons per minute
HDPE	high density polyethylene
HFPO-DA	hexafluoropropylene oxide dimer
IP	Individual Permit
ISB	influent stilling basin
mg/L	milligrams per liter
ng/L	nanograms per liter
NCDEQ	North Carolina Department of Environmental Quality
NEA	Non-Encroachment Area
NCDPS	North Carolina Department of Public Safety
NPDES	National Pollutant Discharge Elimination System
NTU	nephelometric turbidity units
OM&M	operation, maintenance, and monitoring
PFAS	per- and polyfluoroalkyl substances
PFD	Process Flow Diagram
PFMOAA	perfluoro-2-methoxyaceticacid
PMPA	perfluoromethoxypropyl carboxylic acid
psi	pounds per square inch
S.U.	Standard Units
USACE	United States Army Corps of Engineers

USGS

United States Geological Survey

1. INTRODUCTION

1.1 <u>Background</u>

Geosyntec Consultants of NC, PC (Geosyntec) has prepared this Interim Seep Remediation System Plan ("Interim Plan") on behalf of The Chemours Company FC, LLC (Chemours) to provide a design basis for the flow-through cells that are to be installed as the interim seep remediation system at four groundwater seeps at the Chemours Fayetteville Works Site (Figure 1; the Site). Pursuant to requirements of Paragraph 2 of the Addendum to Consent Order Paragraph 12 (CO Addendum), these interim systems shall intercept dry weather flow of Seeps A, B, C and D and achieve a minimum per- and polyfluoroalkyl substances (PFAS) removal efficiency of 80 percent (%) of the intercepted flow at each seep. This will be assessed on a monthly average basis using the indicator parameters hexafluoropropylene oxide dimer (HFPO-DA, i.e. GenX), perfluoromethoxypropyl carboxylic acid (PMPA), and perfluoro-2-methoxyaceticacid (PFMOAA).

This Interim Plan has been prepared to provide: (i) a design basis that documents the anticipated effectiveness and implementation of the proposed remedy; (ii) an operation and maintenance plan that details how the systems will be managed and monitored after construction; and (iii) a sampling plan that will evaluate the performance of the systems at achieving the PFAS removal goal.

1.2 <u>Seep Characterization</u>

The following sections discuss critical data inputs to the design: (i) Seep flow rates; (ii) Seep PFAS concentrations; and (iii) Seep water quality. This section focuses on the sources of these data inputs, and their role in design; design details are discussed in Section 2.

1.2.1 Flow Rate

The flow rates at each seep have been measured in various stages beginning in January 2019. Flumes have been installed at the terminus of each seep, as close as practical to the confluence of the Cape Fear River, as shown in Figure 2. For the larger seeps, notably A and B, several additional flumes have been installed at various tributaries that feed the main channel, and at various locations along the main channel itself. To determine the dry weather base flow at each seep, the dataset has been reduced to remove inundation events (when the Cape Fear River elevation rises and fills the seep channel, submerging

the flume), unreliable data¹, and wet weather events². The evaluation methodology and results are detailed in Appendix A. The summary table below presents the statistical results for each seep, including 25th percentile (considered seasonal low flow), the median (i.e. the 50th percentile flow) and 95th percentile of dry weather flow (considered seasonal high flow). The 95th percentile value will be used as the design basis flow rate, which is used in the design to estimate the usage rate of treatment media, size the media beds accordingly to a reasonable changeout frequency, and account for hydraulic head loss through the system.

Seep	Calculated Dry Weather Flow (gallons per minute [(gpm])			
seep	25 th Percentile (seasonal low flow)	Median (50 th Percentile)	95 th Percentile (seasonal high flow, and Design Basis)	
SEEP A	106	129	205	
SEEP B	130	149	226	
SEEP C	30	42	76	
SEEP D	140	150	183	
TOTAL	406	470	690	

1.2.2 PFAS Loading Rate

The flume locations discussed above have been routinely sampled for Table 3+ compounds. The following table summarizes the median concentrations of the three indicator compounds for each seep terminal location, based on sample data from February 2019 to April 2020. These values have been used in conjunction with the design basis flow rate and isotherm column studies to estimate the potential adsorbent utilization rate (AUR) at each location.

¹ Unreliable data include times when the data logger may have been moved by inundation events from the stilling well in the flume and periods of potential low bias potentially caused by seep flow being diverted around the flume rather than passing through the flume.

² Flow measurements within 24 hours after a rain event are considered wet weather flow.

Sampling Location	Median Concentration in nanograms per liter (ng/L)			
Sumping Docution	HFPO-DA	PMPA	PFMOAA	
SEEP-A-1	20,000	23,000	97,500	
SEEP-B-1	23,000	36,000	180,000	
SEEP-C-1	27,000	14,000	200,000	
SEEP-D-1	15,000	8,700	100,000	

Notes: February 2019 through April 2020 data period. The number of samples varies by seep and by compound, ranging from 7 (for Seep D, all compounds) up to 10 (for Seep A, PMPA and PFMOAA).

1.2.3 Water Quality

During routine sampling of the seeps, water quality parameters were also measured in the field using calibrated water quality instruments, or in the case of dissolved iron, with additional laboratory analysis. The table below summarizes the most recent water quality data available for each seep. These data are utilized for selecting compatible materials for the remedy construction, evaluating the potential adverse effects of naturally occurring dissolved metals, and selecting design components that may mitigate these effects.

Seep	рН (S.U.)	Temperature (°C)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Total Dissolved Iron (mg/L)
Α	5.2	18.4	12.5	5.8	2.7
В	4.9	18.0	10.7	7.4	2.8
С	4.6	17.7	28.3	8.6	2.3
D	4.1	18.2	4.8	8.6	NM

Notes:

Analytical laboratory data for Total Dissolved Iron from February 2019 represent the average across all Seep measurement locations.

All other field measurement parameters (reported as the average of a two-day sampling period in April 2-3, 2020) were collected from the furthest downstream location to the Cape Fear River.

NM = not measured (an updated sampling event for all of the above is planned for third quarter 2020)

NTU = nephelometric turbidity units

mg/L = milligrams per liter

2. DESIGN AND PLACEMENT PLAN

2.1 Interim Seep Remediation System Approach

The first interim seep remediation system, a flow-through cell, will be installed at Seep C (herein referred to as "the System"), and results from construction and operation will inform the design and installation of interim seep remediation systems at the remaining seeps (i.e., A, B, and D). This Interim Plan provides design details specific to the System, but narrative discussion of design and operation herein applies to all the flow-through cells, which will be sized to fit each seep based on the flow rates and morphology of the seep channel (see topographic maps in Figures 3A-3D). The 30% design drawings (Appendix B) and hydraulic and structural calculations (Appendix C) have been developed specifically for the Seep C installation, and are subject to changes based on final design, and from permitting input provided by the appropriate regulatory agencies.

As detailed in Sections 2.8 and 6, final designs for Seeps A, B, and D are anticipated to be submitted to United States Army Corps of Engineers (USACE) and North Carolina Department of Environmental Quality (NCDEQ) for permitting purposes by October 2020.

2.2 System Overview

The flow-through cells have been designed to achieve the following objectives, which are based upon Paragraph 2(a) in the CO Addendum:

- Intercept and hydraulically transmit base flow (during dry weather flow, i.e. groundwater) through the treatment media;
- Remove at least 80% of PFAS indicator compounds from intercepted base flow on a monthly average basis;
- Minimize base flow bypassing the flow-through cells;
- Maintain operation during higher flows (i.e., safely bypass stormwater flow without damaging the flow-through cells); and
- Minimize downtime due to clogging or fouling.

These objectives will be met by impounding seep flow³, which will generate sufficient hydraulic head (approximately six feet) to allow the base flow to enter the flow-through cell and then percolate downward through granular activated carbon (GAC) beds in series and treat the PFAS impacts via adsorption. Treated water will be returned to the stream

 $^{^{3}}$ An earthen dam is shown in the design drawings. Sheet piling is also being evaluated as a means to impound flow.

channel, and the GAC media will be periodically replaced. A spillway and weir will allow for safe bypass and flow measurement of additional flow volume from storm events (Drawing C-02). The System's general flow control process is as follows:

- Impounded water will flow from the impoundment basin through a rectangular opening into an inlet chamber where the seep flow will pass through a 4-ft thick gravel layer into the influent stilling basin (ISB). Flow control valves on inlet manifolds will allow for distribution to one of two GAC filter beds (depending on the lead/lag duty cycle) operating in series for improved treatment efficiency and reliability.
- Water will flow via gravity through the lead GAC filter bed and percolate into underdrains at the bottom of the bed, which will collect the water into a common manifold within an intermediate transfer basin. Water will then flow over another weir from the transfer basin into the lag GAC filter bed, again flowing via gravity to the bottom. As before, water will percolate into underdrains, collect into a similar manifold in the transfer basin, and then discharge into an effluent stilling basin.
- Water will flow over a weir from the effluent stilling basin into the discharge basin, where it will exit the System into the downstream seep channel (Drawings C-03 and C-04). A fiberglass grating platform will be installed over the System to provide operator access to flow control valves, weirs, and measurement/sampling points (Drawing C-05).

A Process Flow Diagram (PFD) that presents the overall System operation and operational modes is provided in Drawing D-01. Four operational modes exist: (i) Filter Bed-1 as lead and Filter Bed-2 as lag; (ii) Filter Bed-2 as lead and Filter Bed-1 as lag; (iii) only Filter Bed-1 operating (changeout of Filter Bed-2 GAC); and (iv) only Filter Bed-2 operating (changeout of Filter Bed-1 GAC).

The major components of the System, and a brief description of their design and function, are provided below.

- <u>Impoundment Basin</u>: The impoundment basin's function is to provide sufficient hydraulic head for the System to overcome head losses through the GAC media. It will be constructed with either earthen berms or sheet piling; a riprap armored slope will be installed on the front and back faces with either method.
- <u>Inlet Channel</u>: Impounded water enters the System through a rectangular inlet channel that can be shut/opened using a removable weir plate. During normal System operations, the weir plate will be removed permitting impounded water to enter the Inlet Chamber to be processed through the System. If non-routine

System maintenance is required, the weir plate will be installed and the elevation of impounded water will rise until it reaches the elevation of the Bypass Spillway (see below), facilitating seep flow bypass of the System.

- <u>Inlet Chamber</u>: The Inlet Chamber pools impounded water atop a gravel layer through which System flow is funneled into the ISB. The head differential between the Inlet Chamber and the ISB provides the driving force for flow through the Gravel Layer.
- <u>Gravel Layer</u>: A Gravel Layer, comprised of #5 stone, will be installed between the Inlet Chamber and the Influent Stilling Basin. The Gravel Layer will act as a "roughing filter" to minimize particulate loading to the GAC filter beds. Further, the gravel media provides additional surface area for iron and manganese to precipitate if the chemical equilibrium of dissolved species shifts towards conditions favorable for precipitation. The gravel layer will provide a robust filter media to protect the GAC filter beds.
- <u>Influent Stilling Basin</u>: Flow passing through the Gravel Layer collects in the ISB and will be diverted into the lead GAC filter bed through flow control devices (FCDs). The status of the FCDs (i.e., open or closed) for the different System operation modes is provided in Drawing D-01. The ISB will be equipped with a vertical flow baffle which will direct flow from the #5 stone layer into the primary ISB compartment that supplies flow to the FCDs.
- <u>GAC Filter Beds</u>: GAC filter beds will treat PFAS present in the System influent via adsorption. They will contain GAC media covered by a geotextile and underlain by a #5 stone draining layer. An underdrain collection system constructed of 6" perforated PVC pipe will be installed within the #5 stone draining layers; the underdrain collection systems will facilitate conveyance of water from the stone draining layers to the transfer basin manifolds. GAC was selected over ion exchange resin for several reasons, most notably due to the smaller particle size and lower hydraulic conductivity of the resin, which would pose hydraulic head losses that would not be practical to overcome.
- <u>Transfer Basin</u>: A transfer basin, situated between the two GAC filter beds, will allow for operation of the GAC filter beds in series. The transfer basin is a rectangular chamber that will accumulate seep flow that has passed through the lead GAC filter bed and divert it to the top of the lag GAC filter bed. The installation of two manifolds and two overflow weirs will provide the ability to reverse the flow path when the lead and lag filter bed positions are switched (i.e., when the GAC in the lead bed is spent and changed out, and the lag bed is placed in the lead position). As shown in the Design Drawings, each GAC filter bed is

connected to the transfer basin via two flow control features: 1) its underdrain collection system and its dedicated manifold which is equipped with two FCDs; and, 2) a dedicated overflow weir. For the manifold plumbed to filter bed in the lead position, the FCDs will be set such that water collected from the underdrain system will be diverted into the transfer basin chamber. The overflow weir between the lead filter bed and the transfer basin will be closed whereas the overflow weir between the lag bed and the transfer basin will be open. The water that accumulates in the transfer basin will be diverted into the lag filter bed via the open overflow weir. Water collected from the underdrain system of the lag filter bed will be diverted to the effluent stilling basin by the manifold plumbed to the lag filter bed. The heights of the overflow weirs will be set to maintain saturated GAC conditions in the lead filter bed.

- <u>Effluent Stilling Basin</u>: The effluent stilling basin will consolidate treated effluent from the lag GAC filter bed prior to discharge. It utilizes a weir to maintain sufficient water elevation in the lag GAC filter bed so they do not go dry during low flow events. The effluent stilling basin will transfer effluent to a common discharge basin.
- <u>Discharge Basin</u>: A common discharge basin will receive treated effluent from the effluent stilling basin and discharge treated effluent from the System, through an outlet pipe to the natural seep channel.
- <u>Platform</u>: A fiberglass grate platform will be installed over the full flow-through cell as a safety measure, with handrails on all sides except for the maintenance platform. The grating will include ports and/or access doors to allow for operator access to the flow control elements and sampling/measurement equipment, and for vacuum trucks to replace the GAC media.
- <u>Maintenance Platform</u>: The maintenance platform will serve as an area where support vehicles and personnel can be staged to support the maintenance and inspection of the System (e.g. GAC changeouts).
- <u>Bypass Spillway</u>: The bypass spillway will allow for a controlled release of excess flows, which exceed the design capacity of the System (e.g. during large rainfall events). The bypass spillway conveys flows around the System and to the downstream stream bed. A rectangular weir will be incorporated into the spillway to allow for flow measurement.
- <u>Effluent Slope</u>: The effluent slope's function is to provide structural stability to the System. It will be constructed with an earthen, riprap armored slope.

2.3 <u>Hydraulics</u>

The System has been designed to manage a range of seasonally variable flow, as measured with the Seep C flume over the previous 18 months. The System will impound and regulate inflow of the Seep C discharge, and in doing so, generate sufficient hydraulic head to overcome losses associated with the operational components outlined in this section (e.g. GAC media, piping, etc.).

The System will be installed such that the Inlet Channel crest is installed at 40.85 feet mean sea level (ft MSL). This will result in the creation of an impoundment basin with the same elevation. During routine operation, the System is designed to convey a minimum of 76 gpm through the ISB and into the System's GAC filter bed. When Seep C flows increase and the elevation of the impoundment basin is approximately 0.5 ft above the Inlet Channel crest, at an elevation of 41.35 ft MSL, water will begin to flow through the bypass spillway, so as not to overwhelm the System's ability to transmit flow.

The flow rate that results in this spillway elevation can be adjusted by manipulating the FCDs in the filter beds (e.g., closing or throttling valves and creating more backpressure). To maintain the longevity of the GAC, the maximum flow through the system will be maintained at the seasonal high base flow value to the extent possible. The extents of the impoundment basin under normal operating conditions (between 40.85 and 41.35 ft MSL) are provided on Drawing C-02, and indicate that there should be no ponding upstream of the roadway near Seep C.

Head loss calculations, provided in Appendix C, consider various operational scenarios depending on seasonal flow rate, and changes to the integrity (cleanliness) of the GAC media. In total, eight scenarios were modeled, with a range of four flow rates (between 30 and 76 gpm) and two conductivity values for the GAC media (clean, unfouled Calgon F400, and fouled media where hydraulic conductivity is reduced by a factor of 4). Contributions to head loss include filtering through the gravel layer separating the inlet chamber and the ISB, geotextile layers, and GAC media; and restrictions through manifold piping, most notably the ISB distribution manifold to the filter beds. The calculations demonstrate that in the worst-case scenario (maximum base flow through fouled GAC media), the filter beds will function hydraulically.

2.4 <u>Treatment Efficiency</u>

The System was designed to have a GAC filter bed of sufficient dimensions to allow for an empty bed contact time (EBCT) of between 30 to 60 minutes, assuming the design flow rate of 76 gpm. A flow of 76 gpm through the 10 ft x 10 ft x 3 ft GAC filter bed results in an estimated EBCT of approximately 30 minutes, as presented in Appendix C. The EBCT at the median flow rate of 42 gpm results in an estimated EBCT of approximately 53 minutes.

Results from adsorption isotherm studies were used to estimate sorption rates to the GAC, the carbon utilization rate, and the GAC changeout frequency. The isotherm study results and relevant calculations are provided in Appendix C. At the median flow rate of 42 gpm, it is estimated that approximately 30,000 pounds (lbs) per year of GAC will be required for Seep C, corresponding to a GAC changeout frequency of approximately 91 days.

Treatment efficiency and breakthrough will be monitored through routine influent, midpoint, and effluent sampling, as described in Section 3.4. The rate of breakthrough and carbon utilization will be monitored to evaluate if the design needs to be modified for the remaining seeps.

2.5 Geotechnical and Structural

Calculations were performed to estimate potential settlement of the structures in the seep channel, the potential buoyant effects during a flooding condition, and to design the thickness and reinforcement requirements for the concrete slab and walls. Calculations are provided in Appendix C.

<u>Settlement</u>: To evaluate the engineering parameters of the foundation soils at the interim remedial seep channel locations, a Cone Penetrometer Testing (CPT) sounding was advanced July 28-29, 2020 at each seep location to a minimum depth of 40 feet. CPT is a direct push technology that allows for continuous data collection (every 2 inches) for tip resistance, sleeve friction, and dynamic pore pressure.

At this time of this report, the CPT data were not available for evaluation, therefore assumed engineering parameters were used in the calculations. Using conservative assumptions, a maximum of 8 inches of uniform settlement could develop during construction. This analysis will be updated once the CPT data is fully evaluated; it is anticipated that the expected settlement will be within design tolerances.

<u>Uplift</u>: During normal operation, the filter beds will have sufficient downward force to provide more than adequate factor of safety based on appropriate safety factors in USACE Engineering Manual 1110-2-2100 (USACE, 2005). Even in an extreme flooding event with the exterior walls fully submerged, the System components (water, GAC, stone, and concrete) will provide sufficient force to overcome buoyant uplift.

<u>Concrete</u>: Load calculations were performed based on potential critical points in the filter beds, for example when a filter bed is drained of GAC and water, while adjoining basins are full of water. Slabs and walls will be constructed of 8" thick concrete, cured to a

compressive strength of 4,000 pounds per square inch (psi), with rebar reinforcement as shown in the calculation drawings⁴.

2.6 <u>Resiliency</u>

This section describes how the System has been designed to overcome various adverse conditions that may be encountered during construction and operation:

<u>Underflow</u>: During the course of the geotechnical/civil design for each of the seep locations, underflow will be addressed. The type of underflow prevention method will be dependent on the expected flow rate, the type of impoundment selected, and the subsurface stratigraphy at each individual seep location. The results of the analysis and calculations will be incorporated in the design.

<u>Scouring from High Flow Events</u>: The System is designed to manage the 95th percentile flow rate at Seep C. As shown in Appendix A, the dry weather base flow varies both diurnally and seasonally. In addition, wet weather will cause stormwater to enter the seep channel, with flow rate depending on antecedent dry conditions and rainfall intensity. The spillway will allow for flow that exceeds the design basis to safely bypass the filter bed System. Also, riprap will be installed on both slopes to reduce surface water velocities that may be encountered during heavy rain events.

Integrity of GAC media: GAC installed within each GAC filter bed will be bounded by a layer of geotextile. The geotextile installed between the GAC and #5 stone will reduce GAC from settling into the drainage layer and assist in reducing #5 stone loss during GAC changeout. The geotextile installed on top of the GAC will provide initial filtration and protection. Both geotextiles will be secured to the walls of the GAC filter beds.

<u>River Flooding</u>: The Cape Fear River's water level is subject to seasonal variation and dam releases upriver from the Site. For Seep C, a Cape Fear River surface elevation of 38 ft msl or higher is considered the threshold where river inundation begins. This elevation threshold is where river levels can materially affect the operation of the flow through cell. The hydraulic head of water flowing through the flow through cell during low river stages is controlled by the rectangular weir separating the effluent stilling basin and the discharge basin with an elevation of approximately 38 ft msl. Cape Fear River surface levels below this elevation will not affect gradients or flow through the flowthrough cell. River levels above the elevation will reduce the gradient through the flowthrough cell and may potentially reduce flow rates through the system. Based on available data from 2007 to present, the river has been above the Seep C inundation threshold of

⁴ Calculations are provided for cast-in-place concrete structures. Precast concrete structures may be utilized for some or all seep locations to expedite construction schedule in the field.

38 ft msl only about 4% of the time with an average duration above 38 ft msl of approximately 5 days.

When Cape Fear River surface levels rise to or above 40.85 ft msl, the same elevation as the inlet weir, gradients and flow directions in the flow-through cells may potentially be reversed. When Cape Fear River surface elevations rise to or above 41.35 ft msl or greater, the same elevation as the bypass spillway, the Cape Fear River will inundate the impoundment basin and limited flow or no flow will occur through the flow-through cell as the bypass spillway presents less resistance to flow. When the river recedes, any impounded water will then flow through the filter beds as during normal operation provided no damage occurred to the flow-through cell.

The flow-through cell perimeter wall elevation is 42.35 ft msl. Based on available data from 2007 to present, the Cape Fear River has only exceeded this elevation about 1.4% of the time during extreme weather events. Structural calculations (discussed in Section 2.5) were performed to demonstrate that even in this extreme event with the flow-through cell fully under water, there is sufficient downward force to prevent flotation. Additionally, saturated GAC (covered by a geotextile) will have a density greater than water and will remain in place.

<u>Iron Fouling</u>: Based on available water quality data and observations of iron oxidation within the current seep channel, iron fouling is a potential concern for long-term integrity of the GAC media. To mitigate this risk, the riprap armored slope on the influent side of the filter beds was developed to provide oxidation sites for the dissolved iron in the water. Periodic maintenance or replacement of the rip rap may be required. The gravel layer that separates the System inlet chamber and the ISB provides additional surface area for iron and manganese to precipitate, providing additional protection of the GAC filter beds. The gravel layer will provide filtering capabilities which will be resilient to clogging due to the media's high conductivity.

Additionally, the GAC filter beds were sized to require GAC changeouts every few months. It is not anticipated that this is a sufficient timeframe for significant fouling of the media to occur. This relationship between EBCT, changeout frequency, and the extent of iron fouling will be a critical component to monitor during System operation, and the GAC loading/changeout frequency of the remaining flow-through cells may be adjusted upward or downward depending on observations at Seep C.

<u>Debris/Clogging</u>: The System is located in a wooded area; therefore, debris from the tree canopy may fall into the impoundment basin or treatment area. To reduce the introduction of debris from the impoundment basin into the treatment area, a skimming baffle may be installed to keep large, floating debris from entering the ISB. Additionally, to reduce the

risk of falling debris entering the treatment area, a deployable protective cover (e.g. allweather tarp) may be used to provide cover and intercept falling debris.

2.7 System Monitoring

The System design includes features to allow for the monitoring of System flow rates, local precipitation, and System performance, as summarized below.

<u>Flow Rates</u>: A pressure transducer will be installed within the Inlet Chamber, which will provide a measurement of the water level in the impoundment; this can be used to measure flow rate through the flow through cell, as well as through the bypass (bypass flows begin when the impoundment height is >0.5 ft above the inlet weir). Flow rates through the bypass spillway can also be recorded during inspection events with the rectangular weir in the spillway that adjoins the flow through cell.

A pressure transducer will also be installed in the Effluent Stilling Basin, to provide a confirmatory measure of flow through the structure, as well as a measurement of head loss through the System.

Transducers can log data at a set frequency (e.g., every 15 minutes) and be downloaded during routine weekly inspections.

<u>Impoundment Height</u>: A United States Geological Survey (USGS) staff gage will be installed within the impoundment for visual measurement of impoundment height.

<u>Precipitation</u>: Precipitation will be monitored by using the existing USGS weather monitoring station at the W.O. Huske Dam (gauge 02105500).

<u>Performance Monitoring</u>: The System's treatment efficacy will be monitored using a combination of dedicated autosamplers and grab samples collected by OM&M personnel. Details of the performance monitoring methods are provided in Section 4.1.

Should other System components need to be monitored in the future, methods and techniques will be developed on a case-by-case basis.

2.8 <u>Permits</u>

The following permits will be required to install the System:

Clean Water Act Section 404 Permit and 401 Certification under USACE and NCDEQ has been determined by those agencies to be required due to wetland and streambed impacts. An onsite agency review meeting was held June 30, 2020 to discuss the flow through cell concept, ongoing design improvements, and anticipated schedules. Per USACE communication from July 29, 2020, an Individual Permit (IP) may be required due to exceeding 300 linear feet of stream disturbances (cumulative for all four seeps); an IP typically requires a public comment period. The stream disturbance for Seep C is less than this threshold, and it has not yet been determined by the agencies whether a

submittal for Seep C alone would qualify for an IP or a general Nationwide Permit. Subject to this determination, an IP for the Seep C System was submitted August 13, 2020. A modification to this IP is anticipated to be submitted by October 2020 for the remaining seeps.

A Land Disturbance Permit under NCDEQ will be required to permit construction⁵. Erosion and sediment control (E&SC) plans will be prepared in compliance with the latest 2013 updates to the Erosion and Sediment Control Planning and Design Manual and submitted to Bladen County representatives for review. A permit application for Seep C was submitted August 27, 2020.

A No-Rise certification will be required due to the emplacement of fill within the Non-Encroachment Area (NEA) of the floodplain. There is no regulated floodway at the eastern boundary of the Site, as Bladen County did not appear to participate in the National Flood Insurance Program that is managed by the Federal Emergency Management Agency. In communications over the course of August 2020 with County and Regional floodplain administrators within the North Carolina Department of Public Safety (NCDPS), it was confirmed that the proposed flow through cell locations are within the NEA. Hydraulic analyses will be prepared to evaluate if the proposed fill will result in any increase in the flood levels during the occurrence of the base flood. This evaluation is planned to be submitted to Bladen County and NCDPS by mid-September 2020. The analyses will include all four seeps (with conservative assumptions about flowthrough cell sizing) to prepare a comprehensive application.

⁵ Note that work will also be conducted in accordance with the Soil and Material Waste Management Plan prepared by Chemours on July 3, 2020 for work conducted in non-manufacturing areas of the Site.

3. OPERATION AND MAINTENANCE PLAN

3.1 <u>Overview</u>

This section provides information on the System commissioning, routine inspections and operation, and maintenance. This work will be conducted to evaluate how the System is operating as compared to design parameters, so that potential optimizations can be completed. Performance monitoring is discussed in Section 4.

3.2 Commissioning and Startup

The System commissioning will be initiated upon completion of construction and will evaluate whether the System has been constructed as designed and operates as designed. The System commissioning will include: (i) inspecting each component of the System for construction defects; (ii) confirming that all valves are operational; (iii) the construction contractor certifying concrete water tightness; and (iv) introducing potable water to evaluate the piping distribution network and flow paths. It is estimated that approximately 15,000-20,000 gallons of potable water (roughly a half-day test at the design flow rate) will be used to evaluate that the piping distribution network operates correctly and adequately distributes influent into the leading GAC filter bed, and correctly diverts flow through the System. This will also prime the GAC filter beds for Seep C flow.

System startup will commence upon completion of the commissioning. The temporary seep bypass that will have been installed during construction will be removed to allow flow to enter the impoundment basin. Startup testing and monitoring will include:

- time required to fill the impoundment basin;
- horizontal and vertical extents of the impoundment basin;
- distribution of influent over the GAC filter beds;
- scouring or development of preferential pathways through the GAC filter beds;
- time to fill various System components;
- time to discharge; and
- influent flow rate.

Once the System is operating as designed, geochemical parameters will be measured and grab water samples will be collected from the inlet weir (influent), transfer basin (partially treated effluent), and discharge basin (effluent) to evaluate the initial operating conditions.

It is anticipated that System startup may take one to two days to complete. The commissioning and startup will be documented by OM&M personnel.

3.3 Inspections and Maintenance

Per the CO Addendum, inspections will occur on a weekly basis (minimum) and include regular inspections after rain events of 0.5 inches or greater within a 24-hour period. An Inspection Form will be filled out by OM&M personnel during each inspection. The routine inspections will include, but are not limited to:

- documenting the System duty cycle (i.e., lead/lag orientation of the GAC filter beds);
- measuring operational parameters, notably the influent and bypass (if any) flow rate and impoundment basin height;
- documenting any potential observed issues, such as sediment accumulation in the impoundment basin, structural problems, GAC fouling, and debris that is impairing flow through the System;
- inspecting the autosamplers (see Section 4.1 for details); and
- photographing the conditions observed, including any bypass flow.

Precipitation will be monitored remotely by using the existing USGS weather monitoring station at the W.O. Huske Dam (gauge 02105500). This station is approximately 1,200 feet from Seep C and records precipitation data every 15 minutes.

Routine preventative maintenance will be performed as needed during the inspections, and will include:

- removing debris (e.g., tree limbs) blocking the inlet weir or other feature
- cleaning and maintaining pressure transducers;
- cleaning and maintaining the autosamplers;
- general good housekeeping activities.

Some non-routine issues may be identified during inspections that cannot be managed by the operator, and will require coordination of equipment, materials, and other personnel. These could include:

- cleaning/clearing/maintaining/replacing of the System's protective cover and the geotextiles installed over the inlet basin #5 stone and GAC filter beds;
- repairing or replacing any flow through cell elements that are damaged;
- managing any accumulated sediment that settles upstream of the weir, and in the impoundment basin; and
- cleaning/clearing valves, notably the inlet manifold diaphragm valves.

Note that many of these maintenance activities could be scheduled to occur at the same time as GAC changeouts, to take advantage of equipment mobilization and limit downtime.

Some non-routine repairs may require an adjustment to the operating protocol. For example, if a storm damages one of the GAC filter beds, the System may have to temporarily operate with only a single GAC filter bed; or if significant storm damage requires the inlet weir to be closed, all seep flow will temporarily bypass through the spillway. If this occurs, Chemours will follow the reporting requirements in Section 5.

3.4 GAC Changeouts

As discussed in Section 2.4, GAC changeout frequencies were estimated using isotherm adsorption data, and the calculations are provided in Appendix C. It is estimated that the Seep C changeout frequency for one GAC filter bed will range between approximately 50 and 91 days (76 and 42 gpm, respectively). GAC changeouts will be conducted based on results from the System's influent, midpoint, and effluent performance monitoring data. Once initial PFAS indicator compound breakthrough has been observed, the sampling frequency may increase; the changeout will be scheduled for when the effluent from the lead GAC filter bed reaches approximately 30% of the influent concentration. By scheduling the changeout at this point, the actual changeout will occur before the midpoint concentration is 50% of the influent concentration. During the changeout operation, flow will be directed into the lag filter bed only, which will ultimately become the lead bed; after the GAC has been replaced in the lead filter bed, it will be put in service as the lag filter bed. The exact timing will be removed with a vacuum truck that is staged at the maintenance platform.

3.5 Interim Remediation System Optimization

During System operation, results from the routine OM&M events (inspections, maintenance, and operation and performance monitoring) and non-routine inspections will be used to evaluate the System's operational efficacy. These evaluations will be used to inform potential optimizations to the System as well as the design and installation of the interim remedial systems to be installed at Seeps A, B, and D. The operational components and elements that will be monitored and evaluated may include:

- the construction of the System in an active seep channel and floodplain, and the bypass of the active seep's flow during construction;
- sediment accumulation and management within the impoundment basin and within the System;
- influent distribution from the ISB to the GAC filter beds;

- the mechanics and frequency of GAC changeouts;
- the mechanics for diverting and changing the effluent flow paths; and
- how the System manages increased seep flow rates during storms and elevated Cape Fear River stages.

Any proposed optimization to the Seep C System will be included as part of the bimonthly (once every two months) report discussed in Section 5.

4. SAMPLING AND EFFECTIVENESS PLAN

4.1 **Operational and Performance Monitoring**

Operational and performance monitoring of the System will be completed on a regular basis to evaluate:

- PFAS removal efficiency;
- breakthrough of PFAS compounds between GAC filter beds, using grab samples on an as needed basis;
- water quality parameters specified in the CO Addendum;
- potential effects of 0.5-inch rain events on PFAS concentrations; and
- flow measurements, via pressure transducers in the flow-through cell (which provide influent flow into the System and through the spillway). Flow rates through the bypass spillway can also be recorded during inspection events with the rectangular weir in the spillway that adjoins the flow through cell.

The operational and performance sampling plan is detailed in Table 1. Composite samples will be collected using portable, battery-powered autosamplers (e.g. ISCO sampler) consistent with other Site assessments. Sample aliquots will be collected in a common container where they will mix and be composited together. At the end of the sampling period, the OM&M personnel will fill laboratory-supplied sample containers from the common container within the autosampler. The autosamplers will be inspected during each inspection and maintenance event to evaluate if they are properly collecting samples and have suitable battery power remaining. Sampling will be conducted in accordance with the PFAS Quality Assurance Project Plan (AECOM, 2018). Any adjustments made to address potential deficiencies (e.g. low battery power, etc.) will be documented on the Inspection Form.

4.2 <u>Effectiveness</u>

System effectiveness defined by the percentage removal of the combined concentrations of the three indicator parameters (HFPO-DA, PFMOAA and PMPA) shall be determined on a monthly average basis for each flow-through cell system at each seep using composite influent and effluent samples as described in Table 1 and above in Section 4.1. Proposed influent and effluent autosampler locations are noted in Drawing C-03 of Appendix B.

The system effectiveness calculation uses volume weighted concentrations of the influent and effluent samples to calculate the percentage of mass removal. Volume weighted concentrations were developed in the event that either the influent and effluent autosamplers have different compositing durations or that the two composite sampling

periods in the month have different durations (e.g. 14 days and 10 days). Both circumstances could arise due to a potential equipment malfunction or severe weather event. Weighting by volume provides a representative assessment of mass present in both the influent and effluent over time; samples corresponding to greater flow volumes will have a proportionately higher weight. However, it is anticipated that during normal operation of the system, the compositing durations will be the same and the effectiveness will be calculated using Equation 1 below:

Equation 1: System Effectiveness

$$System \ Effectiveness = \left(1 - \frac{c_{eff}}{c_{inf}}\right) \times 100\%$$
$$= \left(1 - \frac{\sum_{m=1}^{M} \sum_{i=1}^{i=3} c_{eff,m,i} \times w_m}{\sum_{n=1}^{N} \sum_{i=1}^{i=3} c_{inf,n,i} \times w_n}\right) \times 100\%$$
$$= \left(1 - \frac{\sum_{m=1}^{M} \sum_{i=1}^{i=3} c_{eff,m,i} \times \frac{V_m}{\sum_{m=1}^{M} V_m}}{\sum_{n=1}^{N} \sum_{i=1}^{i=3} c_{inf,n,i} \times \frac{V_n}{\sum_{n=1}^{N} V_n}}\right) \times 100\%$$

where,

 c_{eff} = is the volume weighted effluent concentration for a given month;

 c_{inf} = is the volume weighted influent concentration for a given month;

- m = represents an individual effluent composite sample time interval during a given month;
- M = is the total number of effluent composite sample time intervals during a given months (typically two, 14-day long composite samples);
- n = represents an individual influent composite sample time interval during a given month;
- N = is the total number of influent composite sample time intervals during a given month (typically two, 14-day long composite samples);
- i = represents the three indicator parameters HFPO-DA, PMPA, and PFMOAA.

- $c_{eff,m,i}$ = is the measured concentration of the three indicator parameters for each monthly effluent composite samples⁶;
- $c_{inf,n,i}$ = is the measured concentration of the three indicator parameters for each monthly influent composite samples⁶;
- w_m = is the effluent concentration volumetric weighting factor calculated for and applied individually to each effluent composite sample concentration;

 V_m = is the volume of water entering (and exiting) the flow-through cell system during the effluent composite sample collection period^{7,8};

- w_n = is the influent concentration volumetric weighting factor calculated for and applied individually to each influent composite sample concentration; and
- V_n = is the volume of water entering (and exiting) the flow-through cell system during the influent composite sample collection period^{7,8};

⁶ Non-detect influent and effluent sample results will be assigned a value of zero for the calculation and the values from duplicate samples will be averaged together.

⁷ A time length of 24 hours will be used to calculate influent and effluent volumes for effluent samples collected with composite sample durations less than 24 hours

⁸ While not anticipated, sample durations of less than 24-hours may occur due to events such as the Cape Fear River inundating the flow-through cell.

5. DOCUMENTATION, REPORTING AND MODIFICATION

<u>Interim Effectiveness Demonstration</u>: For each seep System, an effectiveness report will be submitted within four months of startup that summarizes the construction, provides as-built drawings, and evaluates whether the System has consistently intercepted base flow and removes target PFAS indicator compounds at an efficiency of at least 80%, on a monthly average basis for each of the second and third full calendar months of operation.

<u>Modification</u>: If necessary, after six months of operation of the interim seep remediation systems at Seeps A through D, Chemours may submit a proposed modification to the Operation and Maintenance Plan and the Sampling and Effectiveness Plan.

<u>OM&M Reports</u>: Each routine OM&M event (inspection, maintenance, or performance monitoring) will be documented by the OM&M personnel conducting the OM&M event. Customized Inspection Forms and Sampling Logs will be developed to document the routine OM&M events and will be completed during each event. Non-routine inspection or maintenance events will be recorded as well.

Reports will be provided to NCDEQ and Cape Fear River Watch every two months with available analytical results, and operational data (e.g. flow, GAC consumption, PFAS treatment efficiency). The monthly reports will be submitted within 30 days of the end of the reporting month (i.e. the January/February 2021 monthly report will be submitted by 30 March 2021). A detailed reporting schedule is provided in Section 6.

<u>Upset Conditions</u>: In the case of an upset or other condition impeding the operation of the System, Chemours will notify NCDEQ, Cape Fear River Watch, and downstream drinking water utilities in writing within 24 hours of knowledge of such conditions.

6. SCHEDULE

6.1 Design, Permit and Construction Schedule

The anticipated flow-through cell design, permit, and construction schedule is as follows, with CO Addendum milestones noted. Best estimates are presented with the currently available information, and are subject to uncertainty based on permitting review periods (some of which may include public comment periods), extreme weather (i.e., Atlantic hurricane season), and potential work restrictions and supply chain disruptions as a result of the COVID-19 pandemic.

- August 13, 2020: Submittal of 401/404 IP for the Seep C interim remediation system (*completed*)
- August 27, 2020: Submittal of Seep C Land Disturbance permit to NCDEQ
- Mid-September 2020: Submittal of No-Rise Certification to Bladen County and Regional NCDPS Floodplain Management
- Mid- to Late-September 2020: Anticipated approvals from NCDEQ and USACE (note that this is subject to agency review timelines and potentially public comment periods, and difficult to reliably predict). Should permit approvals extend beyond this date, it is anticipated that Seep C construction completion could be delayed.
- Late September 2020: Construction setup at Seep C interim remediation system
- Mid-October 2020: Submittal of Seeps A, B, and D designs as modification to 401/404 IP
- November 16, 2020: Complete construction of Seep C interim remediation system (*CO Addendum Milestone*)
- Mid-December 2020: Submittal of Land Disturbance Permit to NCDEQ for Seeps A, B and D
- Late December 2020: Anticipated approvals from NCDEQ and USACE for Seeps A, B, and D (note that this is subject to agency review timelines and potentially public comment periods, and difficult to reliably predict). Should permit approvals extend beyond this date, it is anticipated that Seep A construction completion could be delayed.
- February 22, 2021: Complete construction of Seep A flow through cell (CO Addendum Milestone

- March 15, 2021: Complete construction of Seep B flow through cell (CO Addendum Milestone
- April 5, 2021: Complete construction of Seep D flow through cell (*CO Addendum Milestone*

6.2 <u>Reporting Schedule</u>

The anticipated reporting schedule through 2021 is as follows:

- Mid-October 2020: Submittal of final designs for Seeps A, B, and D to NCDEQ and USACE
- February 26, 2021: O&M Report #1
- March 16, 2021: Interim Effectiveness Report for Seep C
- April 30, 2021: O&M Report #2
- June 22, 2021: Interim Effectiveness Report for Seep A
- June 30, 2021: O&M Report #3
- July 15, 2021: Interim Effectiveness Report for Seep B
- August 5, 2021: Interim Effectiveness Report for Seep D
- August 31, 2021: O&M Report #4
- October 5, 2021: Potential submittal of Modification to Operation and Maintenance Plan and Sampling and Effectiveness Plan
- October 29, 2021: O&M Report #5
- December 31, 2021: O&M Report #6

The reporting schedule from 2022 until completion will consist of O&M Reports submitted once every two months.

7. REFERENCES

- AECOM, 2018. Poly and Perfluoroalkyl Substance Quality Assurance Project Plan. August 2018.
- Geosyntec, 2019a. Seeps and Creeks Investigation Report. Chemours Fayetteville Works. 26 August 2019.
- Geosyntec, 2019b. Cape Fear River PFAS Loading Reduction Plan. Chemours Fayetteville Works. 26 August 2019.
- Geosyntec, 2019c. Cape Fear River PFAS Loading Reduction Plan Supplemental Information Report. Chemours Fayetteville Works. 4 November 2019.
- Geosyntec, 2019d. Corrective Action Plan. Chemours Fayetteville Works. 31 December 2019.
- United States Army Corps of Engineers, 2005. Stability Analysis of Concrete Structures. Engineer Manual 1110-2-2100. 1 December 2005.

TABLES

TABLE 1 SAMPLING PLAN Chemours Fayetteville Works, North Carolina

	Sample/Measurement Frequency ⁴ by Location				
Parameter	Influent	Midpoint	Effluent	Bypass Spillway	
PFAS Removal and Water Quality Performance Monitoring ¹	Twice per month, 14-day composites, with aliquots every six hours	-	Twice per month, 14-day composites, with aliquots every six hours	-	
PFAS Breakthrough Monitoring ²	As needed, with rush turnaround to the extent practical. During startup of Seep C, could be as frequent as twice per month. Long-term frequency will depend on the results of the Seep C operation, and variable influent flow rate.			-	
Wet Weather Bypass Monitoring	After rain events of 0.5 inches or more within a 24 hour period	-	After rain events of 0.5 inches or more within a 24 hour period	Not needed - influent samples for flow-through cell performance monitoring will suffice	
Flow Rate ³	Data automatically recorded every 15 minutes and downloaded weekly.	-	-	Data automatically recorded every 15 minutes and downloaded weekly.	

Notes:

1. Autosamplers in Inlet Chamber (influent) and Effluent Stilling Basin (effluent). Composite samples will be analyzed by TestAmerica laboratories for Table 3+ PFAS (see defined list below) and total suspended solids. The samples will also be measured in the field with a calibrated water quality meter for turbidity, dissolved oxygen, pH, conductivity, and temperature.

2. Grab samples will be submitted to the onsite laboratory, with an anticipated detection limit of approximately 100 nanograms per liter for the target indicator compounds. This resolution will be sufficient for purposes of breakthrough monitoring. The lowest concentration value for any indicator compound at any seep is PMPA at Seep D (8,700 ng/L in April 2020). 20% of this lowest value (indicating an 80% removal) would be 1,740 ng/L, thus the resolution of the onsite laboratory is sufficient.

3. As detailed in the Design Drawings, the impoundment elevation will be measured with a transducer in the Inlet Chamber, which will provide flow rate measurements through the flow through cell and the bypass spillway (if elevated 0.5ft above the inlet weir). A transducer in the Effluent Stilling Basin will also measure influent flow rate, as well as head loss through the media. Bypass flow rate in the rectangular weir can also be recorded in the field during inspections.

4. After six months of operation of the interim seep remediation systems at Seeps A through D, Chemours may submit a proposed modification to the Operation and Maintenance Plan and the Sampling and Effectiveness Plan. Such modification could include adjustments to the frequency of sampling listed in this table.

List of 20 Table	3+ Parameters:
------------------	----------------

Common Name	Chemical Name
HFPO-DA	Hexafluoropropylene oxide dimer acid
PFMOAA	Perfluoro-2-methoxyacetic acid
PFO2HxA	Perfluoro-3,5-dioxahexanoic acid
PFO3OA	Perfluoro-3,5,7-trioxaoctanoic acid
PFO4DA	Perfluoro-3,5,7,9-tetraoxadecanoic acid
PFO5DA	Perfluoro-3,5,7,9,11-pentaoxadodecanoic acid
PMPA	Perfluoro-2-methoxypropionic acid
PEPA	Perfluoro-2-ethoxypropionic acid
PS Acid	Ethanesulfonic acid, 2-[1-[difluoro[(1,2,2-trifluoroethenyl)oxy]methyl]-1,2,2,2-tetrafluoroethoxy]-1,1,2,2-tetrafluoro-
Hydro-PS Acid	Ethanesulfonic acid, 2-[1-[difluoro(1,2,2,2-tetrafluoroethoxy)methyl]-1,2,2,2-tetrafluoroethoxy]-1,1,2,2-tetrafluoro-
R-PSDCA	Ethanesulfonic acid, 1,1,2,2-tetrafluoro-2-[1,2,2,3,3-pentafluoro-1-(trifluoromethyl)propoxy]-
NVHOS	1,1,2,2,4,5,5,5-heptafluoro-3-oxapentanesulfonic acid; or 2-(1,2,2,2-ethoxy)tetrafluoroethanesulfonic acid; or 1-(1,1,2,2-tetrafluoro-2-sulfoethoxy)-1,2,2,2-tetafluoroethane
EVE Acid	2,2,3,3-tetrafluoro-3-({1,1,1,2,3,3-hexafluoro-3-[(1,2,2-trifluoroethenyl)oxy]propan-2-yl}oxy)propionic acid
Hydro-EVE Acid	2,2,3,3-tetrafluoro-3-({1,1,1,2,3,3-hexafluoro-3-[(1,2,2,2-tetrafluoroethyl)oxy]propan-2-yl}oxy)propionic acid
PES	Perfluoro-2-ethoxyethanesulfonic acid
PFECA B	Perfluoro-3,6-dioxaheptanoic acid
PFECA-G	Perfluoro-4-isopropoxybutanoic acid
R-PSDA	Pentanoic acid, 2,2,3,3,4,5,5,5-octafluoro-4-(1,1,2,2-tetrafluoro-2-sulfoethoxy)-
Hydrolyzed PSDA	Acetic acid, 2-fluoro-2-[1,1,2,3,3,3-hexafluoro-2-(1,1,2,2-tetrafluoro-2-sulfoethoxy)propoxy]-
R-EVE	Pentanoic acid, 4-(2-carboxy-1,1,2,2-tetrafluoroethoxy)-2,2,3,3,4,5,5,5-octafluoro-

FIGURES

Legend

- Notes:
 * Flow measurement was taken at W.O. Huske Dam USGS Gauge Site No. 02105500
 1. Flow at Old Outfall 002, Seep A, Seep B, Seep C, and Seep D locations were measured using flumes.
 2. Flow at Willis Creek and Georgia Branch Creek were measured using flow sets of the set of th
- using flow velocity method.
 Results of estimated flow at these locations are provided in Table 9 with supplemental flow measurement data included in Appendix E.
- with supplemental flow measurement data included in Appendix E.
 4. The outline of Cape Fear River is approximate and is based on open data from ArcGIS Online and North Carolina Department of Environmental Quality Online GIS.
 5. Basemap sources: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.

Geosyntec ^{>}	Geosyntec Consultants of NC, P.C. NC License No.: C 3500 and C 295	Figure
constantints		
Raleigh	August 2020	2

Legend

Topography Contours (ft NAVD88)

5 Foot Interval

----- 1 Foot Interval

- - Observed Seep
- Nearby Tributary
 - Site Boundary

Notes: ft NAVD88 - feet North American Vertical Datum 1988.

- River Stage contours are derived from Lidar scans performed on December 1, 2019 and December 19, 2019 by Spectral Data Consultants, Inc.
 Seep locations identified visually as reported in Geosyntec, 2019. Seeps and Creeks Investigation Report. Chemours Fayetteville Works. 26 August 2019.
 The outline of Cape Fear River is approximate and is based on open data from ArcGIS Online and North Carolina Department of Environmental Quality Online GIS (MajorHydro shapefile).
 Basemap source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.

Raleigh

August 2020

Legend

Topography Contours (ft NAVD88)

- 5 Foot Interval
- ----- 1 Foot Interval
- Observed Seep
- Nearby Tributary
 - Site Boundary

Notes: ft NAVD88 - feet North American Vertical Datum 1988.

- River Stage contours are derived from Lidar scans performed on December 1, 2019 and December 19, 2019 by Spectral Data Consultants, Inc.
 Seep locations identified visually as reported in Geosyntec, 2019. Seeps and Creeks Investigation Report. Chemours Fayetteville Works. 26 August 2019.
 The outline of Cape Fear River is approximate and is based on open data from ArcGIS Online and North Carolina Department of Environmental Quality Online GIS (MajorHydro shapefile).
 Basemap source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.

Legend

Topography Contours (ft NAVD88)

5 Foot Interval

----- 1 Foot Interval

- - - Observed Seep

Nearby Tributary

Site Boundary

Notes:

ft NAVD88 - feet North American Vertical Datum 1988.

- River Stage contours are derived from Lidar scans performed on December 1, 2019 and December 19, 2019 by Spectral Data Consultants, Inc.
 Seep locations identified visually as reported in Geosyntec, 2019. Seeps and Creeks Investigation Report. Chemours Fayetteville Works. 26 August 2019.
 The outline of Cape Fear River is approximate and is based on open data from ArcGIS Online and North Carolina Department of Environmental Quality Online CIS (Mainthub a change)
- GIS (MajorHydro shapefile).
 4. Basemap source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.

Legend

Topography Contours (ft NAVD88)

5 Foot Interval

----- 1 Foot Interval

- - - Observed Seep

Nearby Tributary

Site Boundary

Notes:

ft NAVD88 - feet North American Vertical Datum 1988.

- River Stage contours are derived from Lidar scans performed on December 1, 2019 and December 19, 2019 by Spectral Data Consultants, Inc.
 Seep locations identified visually as reported in Geosyntec, 2019. Seeps and Creeks Investigation Report. Chemours Fayetteville Works. 26 August 2019.
 The outline of Cape Fear River is approximate and is based on open data from ArcGIS Online and North Carolina Department of Environmental Quality Online GIS (MajorHydro shapefile).
 Basemap source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.

APPENDIX A Seeps A, B, C and D Dry Weather Flow Evaluation

Geosyntec Consultants of NC, P.C. NC License No.: C-3500 and C-295

APPENDIX A

SEEPS A, B, C AND D DRY WEATHER FLOW EVALUATION

INTRODUCTION AND BACKGROUND

There are four onsite groundwater seeps A, B, C and D (Figure 1 of the main text) that emanate on the bluff face from the facility and discharge into the Cape Fear River. As required in the Addendum to Consent Order Paragraph 12, Chemours must install flow through cells at these four seeps and intercept base flow during dry weather. Chemours had previously installed flumes at the terminus of each seep, as close as practical to the confluence of the Cape Fear River (Figure 2 of the main text). For the larger seeps, notably A and B, several additional flumes were also installed at various tributaries that feed the main channel, and at various locations along the main channel itself. This appendix describes how the data collected from these flumes were evaluated to estimate the dry weather flow (i.e., base flow) and the wet weather flow.

The remainder of this appendix is organized as follows:

- Data Collection describes how seep flow data were collected;
- Methodology describes how seep flow data were organized and assessed;
- **Results** describes the results of the assessment; and
- Attachments tables and figures showing data assessed and results.

DATA COLLECTION

Flow rates of water through a flume are estimated by recording the depth of water in the flume and converting this depth into a flow rate using a conversion formula based on the known geometry of the flume. The depths of water in the flumes were measured using a level logger (Solinst 3001 LT F30/M10) which recorded water elevation measurements on either fifteen- or thirty-minute intervals. The data from the loggers were periodically downloaded, adjusted for barometric pressure, and then used to calculate the depth of water in each flume. The depth data were then used to estimate the flumes.

Flumes at each of the seeps were periodically maintained and/or repaired to correct for observed bypass around the flume, which would result in low bias measurements. Maintenance activities included resetting sandbags and water diversion structures to direct waterflow from the seep through the flume. At other times, the flumes were inundated by elevated Cape Fear River water levels, leading to the flumes being unable to measure flows in the seeps.

METHODOLOGY

Dry weather flow rates were estimated using the following steps listed below and described in the following sub-sections:

Geosyntec Consultants of NC, P.C. NC License No.: C-3500 and C-295

- 1. Organize Data;
- 2. Remove Unreliable Data;
- 3. Determine Weather Conditions for Usable Data; and
- 4. Calculate Flow Rate Statistics.

Organize Data

Data for each flume were organized to have the data set contain flow readings on 30-minute intervals. Interval lengths were kept constant across the analysis for each flume to reduce potential bias when calculating statistics¹.

Flow rate data were then paired with the corresponding precipitation data for that date and time. Precipitation data were taken from the onsite meteorological station and supplemented with precipitation data from the United States Geological Survey (USGS) monitoring station at the W.O. Huske Dam if there were no onsite precipitation data available.

Remove Unreliable Data

Unreliable data were removed from the data set from each flume. Unreliable data included data when (a) field records indicated the flume was not operational, (b) the flume was inundated by elevated Cape Fear River water levels, and (c) when the flume data exhibited a low bias. Field records were provided by Parsons of NC (Parsons) to determine when the flume was not operational.

Cape Fear River inundation events were identified by plotting the flow rate for each flume against the Cape Fear River water elevation. These plots are shown in Figures A-1 to A-6. Typically the Cape Fear River and the calculated flume flow rates are not correlated with each other. However, when the river inundates a flume, it causes the level logger in the flume to report an increased depth reading, and consequently higher flows will be calculated; often these flows are much greater than the range capacity of the flume. Inundation events were removed from the data sets.

Low bias data were identified as periods where the flume measurements were lower than typical for other periods and maintenance records indicated the status of the flume was unknown. Field observations have shown that water will flow around the flume if there is damage or erosion to the structures funneling water to the flumes, indicating that overtime flumes are potentially prone to develop a low bias.

The flow data for each flume, both the usable and the unreliable data, along with the amount of rain in the prior 24-hours for each interval are plotted in Figures A-7 to A-13.

¹ Constant interval periods for summary statistics are important since if there were periods with shorter intervals, there would be more intervals for this time period, leading to it being over-represented in the statistical assessment. The converse is true for periods with longer intervals.

Geosyntec Consultants of NC, P.C. NC License No.: C-3500 and C-295

Determine Weather Conditions of Usable Data

With the data organized, and unreliable data removed (i.e. the data conditioned), the weather conditions for each 30-minute interval was determined based on the following criteria:

- Dry any interval for which there was no precipitation during the given interval and during the prior 24-hours;
- Wet any interval for which there is precipitation during the given interval or during the prior 24-hours;

Calculate Flow Rate Statistics

With weather conditions specified for the usable data sets, flow rate statistics for each weather type were calculated.

RESULTS

A statistical summary of the 95th, 50th, and 25th percentile flow rates for each weather condition for each flume is provided in Table A-1. The dry weather data have a consistently lower flow rate than the wet weather data. The dry weather data were all within the measurement ranges of the respective flumes. The Seep with the highest estimated base flow was Seep B, with a combined dry weather 95th percentile flow of 226 gallons per minute. The lowest flow was for Seep C, with a dry weather 95th percentile flow of 76 gallons per minute.

ATTACHMENTS

Tables

Table A-1:

: Seep Flow Rate Statistics Summary

Figures

Figure A-1:	Seep A, Flume A-1: Flow	v Data vs Cape Fear River	Gage Height

- Figure A-2: Seep B, Flume B-2: Flow Data vs Cape Fear River Gage Height
- Figure A-3: Seep B, Flume B-TR1: Flow Data vs Cape Fear River Gage Height
- Figure A-4: Seep B, Flume B-TR2: Flow Data vs Cape Fear River Gage Height
- Figure A-5: Seep C: Flow Data vs Cape Fear River Gage Height
- Figure A-6: Seep D: Flow Data vs Cape Fear River Gage Height
- Figure A-7: Seep A1, Flume A-1: Flow Data
- Figure A-8: Seep B, Flume B-2: Flow Data
- Figure A-9: Seep B, Flume B-TR1: Flow Data
- Figure A-10: Seep B, Flume B-TR2: Flow Data
- Figure A-11: Seep B, Combined: Flow Data
- Figure A-12: Seep C: Flow Data
- Figure A-13: Seep D: Flow Data

Geosyntec Consultants of NC, P.C. NC License No.: C-3500 and C-295 DocuSign Envelope ID: B2FF4FC7-6D41-46A2-A3D7-DF33B661BD1B

TABLES

TABLE A-1

SEEP FLOW RATE STATISITCS SUMMARY Chemours Fayetteville Works, North Carolina

Weather Condition	Data Points	Days with Weather	Flow Rate Percentile Values (gallons per minute)				
		Condition	95%	50%	25%		
Seep A, Flume A-1							
Dry Weather	5,087	106	205	129	106		
Wet Weather	2,000	42	320	172	132		
All Data	7,087	148	238	136	111		
	Se	ep B, Flume B2	(Mid)				
Dry Weather	6,302	131	145	87	74		
Wet Weather	2,699	56	244	106	89		
All Data	9,001	188	176	93	77		
	Seep	B, Flume BTR	l (North)				
Dry Weather	4,449	93	52	29	23		
Wet Weather	2,360	49	111	35	27		
All Data	6,809	142	64	31	24		
	Seep	B, Flume BTR	2 (South)	-	-		
Dry Weather	4,591	96	45	27	20		
Wet Weather	2,345	49	70	30	23		
All Data	6,936	145	52	28	21		
	S	eep B Data Com	bined				
Dry Weather	2,731	57	226	149	130		
Wet Weather	1,647	34	329	167	145		
All Data	4,378	91	257	155	135		
		Seep C					
Dry Weather	6,177	129	76	42	30		
Wet Weather	2,659	55	119	57	43		
All Data	8,836	184	86	46	33		
		Seep D					
Dry Weather	328	7	183	150	140		
Wet Weather	343	7	225	159	154		
All Data	671	14	208	157	146		

DocuSign Envelope ID: B2FF4FC7-6D41-46A2-A3D7-DF33B661BD1B

FIGURES

APPENDIX B 30% Design Drawings

2

THE CHEMOURS COMPANY FAYETTEVILLE WORKS PROJECT SEEP C INTERIM REMEDIATION SYSTEM WILLIS CREEK AND CAPE FEAR RIVER CORRIDOR FAYETTEVILLE, BLADEN AND CUMBERLAND COUNTIES STATE OF NORTH CAROLINA AUGUST 2020

INDEX OF DRAWINGS							
DRAWING NO.	DRAWING TITLE						
G-01	COVER SHEET						
G-02	NOTES AND SYMBOLS						
C-01	OVERALL SITE PLAN						
C-02	SEEP C INTERIM REMEDIATION SYSTEM PLAN						
C-03	SEEP C INTERIM REMEDIATION SYSTEM CONSTRUCTION DETAILS I						
C-04	SEEP C INTERIM REMEDIATION SYSTEM CONSTRUCTION DETAILS II						
C-05	PLATFORM AND LADDER STRUCTURAL DETAILS						
D-01	SEEP C INTERIM REMEDIATION SYSTEM PROCESS FLOW DIAGRAM						

ATRIUM AT BLUE RIDGE 2501 BLUE RIDGE ROAD, SUITE 430 RALEIGH, NC 27607 919.870.0576

		08.14.20	30% DESIGN SUB					JFH	CAS			
	REV	DATE		DES	SCRIPTION			DRN	APP			
(Geo	OSYT const	Itants	Geosyntec Consult NC License No.: C-			2501 BLUE RIDG	RALEIGH, NC	ITE 430			
ПТ	ΓLE:			COVE	R SHEET							
PR	ROJECT:		SEE	THE CHEMO EP C INTERIM R			EM					
SIT												
					DESIGN BY:	CMDS	DATE:	AUGUS	Г 2020			
					DRAWN BY:	JFH	PROJECT NO.:	TR0795	;			
					CHECKED BY:	JWE	FILE:	TR0795	-G001.dwg			
S					REVIEWED BY:	JJD	DRAWING NO.	:				
)N					APPROVED BY:	CAS	G-01					

SYMBOL LEC	GEND
------------	------

\triangle

×
~
\swarrow
+
\oplus
.
4%
CREST TOE 1

CONTROL MARKER (NOTE 2)	 40
GROUNDWATER PIEZOMETER	 40
GUY WIRE	
HEADWALL	
HISTORICAL WELL / PIEZOMETER	
MONITORING NETWORK WELL	
POWER POLE	
PRINCIPAL SPILLWAY RISER	 DETAIL A
RELIEF WELL	
SLOPE GRADE	
SLOPE INDICATOR	DETAIL NUMB
SLOPE LABEL	
TRAILER OR BUILDING	DRAWING ON WHI ABOVE DETAIL W FIRST REFERENC
VEGETATION	
WATER SURFACE	
ROCK CHECK DAM	

START OF SECTION (0+00) —

SECTION LETTER -

DRAWING ON WHICH ABOVE SECTION WAS FIRST REFERENCED -

2

3

ABBREVIATIONS

ACCESS ROAD (EXISTING AND PROPOSED)
CONCRETE
GRAVEL
PIPE EMBEDMENT FILL
RIPRAP
STREAM (NOTE 1)

SUBGRADE

TRENCH BACKFILL / EARTHEN FILL

WETLANDS (NOTE 3)

CONTOUR LEGEND

EXISTING GROUND ELEVATION (FEET) (NOTE 1)

FINISHED GRADE SURFACE ELEVATION (FEET)

AND SECTION IDENTIFICATION LEGEND

EXAMPLE: SECTION LETTER "A" WHICH IS PRESENTED ON DRAWING NO. 9 WAS FIRST REFERENCED ON DRAWING NO. 5.

AASHTO	AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION
APP	APPROVED BY
¢	CENTER LINE
DRN	DRAWN BY
DWG	DRAWING
E	EAST OR EASTING
EL	ELEVATION
FT	FEET
HDPE	HIGH DENSITY POLYETHYLENE
H:V	HORIZONTAL TO VERTICAL LENGTH RATIO FOR A SLOPE
HWY	HIGHWAY
IN	INCH
INV	INVERT
MAX	MAXIMUM
MIN	MINIMUM
MSL	MEAN SEA LEVEL
Ν	NORTH OR NORTHING
NAD	NORTH AMERICAN DATUM
NAVD88	NORTH AMERICAN VERTICAL DATUM OF 1988
NCDEQ	NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY
NO.	NUMBER
NPDES	NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM
N.S.A.	NATIONAL STONE ASSOCIATION
NTS	NOT TO SCALE
OC	ON CENTER
OZ	OUNCE
PFAS	PER- AND POLYFLUOROALKYL SUBSTANCES
PROJ	PROJECT
RCP	REINFORCED CONCRETE PIPE
RD	ROAD
REV	REVISION
S	SOUTH
SWP	STORMWATER PIPE
TYP	TYPICAL
U.S.	UNITED STATES
USEPA	UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
W	WEST
W.S.	WATER SURFACE

PERCENT OR PERCENTILE %

> 30% DESIGI NOT FOR COM

5

REFERENCE NOTES

С

D

TION OFFICIALS

NOTES:

1. THE BASIS OF BEARINGS FOR THIS SURVEY IS NC GRID BASED ON NAD83. THE BASIS OF ELEVATIONS FOR THIS SURVEY IS NAVD88 BASED ON AN OPUS SESSION PERFORMED ON NOVEMBER 16, 2019. THE TOPOGRAPHY OF THIS SURVEY HAS A CONTOUR INTERVAL OF ONE FOOT AND WAS PRODUCED FROM TWO LIDAR SCANS OF THE AREA. THE SCANS WERE PERFORMED ON DECEMBER 1, 2019 AND DECEMBER 19, 2019 BY SPECTRAL DATA CONSULTANTS, INC. PROJECT NO. 19085. THIS SURVEY WAS MADE IN ACCORDANCE WITH LAWS AND/OR MINIMUM STANDARDS OF THE STATE OF NORTH CAROLINA.

- 2. SAID DESCRIBED PROPERTY IS LOCATED WITHIN AN AREA HAVING A ZONE DESIGNATION "X" & "AE" BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY (FEMA), ON FLOOD INSURANCE RATE MAP NO. 3720035900J, WITH A DATE OF IDENTIFICATION OF JANUARY 5, 2007, IN BLADEN COUNTY, STATE OF NORTH CAROLINA AND ON FLOOD INSURANCE RATE MAP NO. 3720044000J, WITH A DATE OF IDENTIFICATION OF JANUARY 5, 2007, IN CUMBERLAND COUNTY, STATE OF NORTH CAROLINA, WHICH ARE THE CURRENT FLOOD INSURANCE RATE MAP FOR THE COMMUNITY IN WHICH SAID PREMISES IS SITUATED. THE BASE FLOOD ELEVATION FOR THE AREA IS 68' MSL.
- 3. APPROXIMATE EXTENT OF DELINEATED WETLANDS. (WATERS OF THE UNITED STATES TECHNICAL REPORT, THE CHEMOURS COMPANY FAYETTEVILLE WORKS PROJECT: FLOW-THROUGH CELLS, SEEP C PILOT STUDY, AND REVISED SEEP A. PARSONS, AUGUST 2020)

	A 08.14.20 30% DESIGN SUBMITTAL								JFH	CAS	
	REV	DATE			DESC	CRIPTION			DRN	APP	
	Ge	OSYT consu	Itec ^D	Geosyn NC Lice		ants of NC, P.C. 3500 and C-295	ATRIUM AT BLUE RIDG 2501 BLUE RIDGE ROAD, SUITE 43 RALEIGH, NC 2760 919.870.057				
	TITLE:			NOT	ES AN	ID SYMBC	DLS				
	PROJECT:		SE			URS COMP. EMEDIATIO		EM			
	SITE:	FAYETTEVILLE WORKS SITE									
						DESIGN BY:	CMDS	DATE:	AUGUS	T 2020	
						DRAWN BY:	JFH	PROJECT NO.:	TR0795	5	
						CHECKED BY:	JWE	FILE:	TR0795	-G002.dwg	
N DRAWINGS						REVIEWED BY:	JJD	DRAWING NO .:			
ISTRUCTION						APPROVED BY:	CAS	<u> </u>	-		

DocuSign Envelope ID: B2FF4FC7-6D41-46A2-A3D7-DF33B661BD1B

- 1. A FIBERGLASS GRATE WILL BE INSTALLED OVER THE INFLUENT STILLING BASIN AND TRANSFER BASIN TO PROVIDE OPERATOR ACCESS TO FLOW CONTROL VALVES AND SAMPLE LOCATIONS. SEE DRAWING C-05 FOR DETAILS
- 2. TRANSDUCERS WILL BE INSTALLED IN THE INLET CHAMBER AND THE EFFLUENT STILLING BASIN TO MONITOR WATER LEVELS. THE FLOW RATES THROUGH THE BYPASS SPILLWAY FLUME AND THE FILTER BED SYSTEM WILL BE CALCULATED BASED ON THE WATER LEVELS MEASURED IN THE INLET CHAMBER AND THE
- 3. COMPOSITE SAMPLERS WILL BE PLACED WITHIN THE INLET CHAMBER, THE EFFLUENT STILLING BASIN, AND THE BYPASS SPILLWAY FOR PERFORMANCE MONITORING. GRAB SAMPLES WILL ALSO BE PERFORMED AS NECESSARY, INCLUDING FROM WITHIN THE TRANSFER BASIN, TO EVALUATE BREAKTHROUGH.
- 4. SAFETY RAILING SHALL BE FACE-MOUNTED AND REMOVABLE.

6

					0	SCAL	3 E IN FEET	6				E
	A	08.14.20	30% DESIGN S	SUBMITT	- AL					JFH	CAS	
	REV	DATE				DES	CRIPTION			DRN	APP	
	Geosyntec Geosyntec Consultants of NC, P.C.								2501 BLUE RIDGE	IUM AT BLUE RIDGE GE ROAD, SUITE 430 RALEIGH, NC 27607 919.870.0576		
					FAYET	TEVILI	LE WORKS	SITE				F
							DESIGN BY:	CMDS	DATE:	AUGUST	2020	
							DRAWN BY:	JFH	PROJECT NO.:	TR0795		
							CHECKED BY:	JWE	FILE:	TR0795-	-C503.dwg	
N DRAWINGS							REVIEWED BY:	JJD	DRAWING NO.:			
NSTRUCTION							APPROVED BY:	CAS	<u> </u>	-		
			7						8			┞

NOTES: 1. SAFETY RAILING SHALL BE FACE MOUNTED AND REMOVABLE.

D

DocuSign Envelope ID: B2FF4FC7-6D41-46A2-A3D7-DF33B661BD1B

" GATE VALVE (TYP)			ERDRAIN COLLE RFORATED PVC	CTION SYSTEM C (TYP)						
FILTER BED 2 (FB2)	/	/								
		CARBON E DRAIN								D
			V13							
			H 80 PVC HRAGM VALVE (TYP)						
	V12 O CHARGE BASIN	, DISCHARG TO SEEP CHANNEL)							E
	A REV	08.14.20 DATE	30% DESIGN SUB	MITTAL	DESCRIPTION			JFH DRN	CAS APP	
TH ON SITION	Geo		Itec	•	sultants of NC, P.C. .: C-3500 and C-295		2501 BLUE RIDG	RALEIGH, NC	ITE 430	
	TITLE:		SEEP		REMEDIATIO		TEM			
	PROJECT:				MOURS COMPA					
			SEE		I REMEDIATION		Μ			
	SITE: FAYETTEVILLE WORKS SITE									F
					DESIGN BY:	CMDS	DATE:	AUGUS	Т 2020	
					DRAWN BY:	JFH	PROJECT NO.:	TR0795	5	
					CHECKED BY:	JWE	FILE:	TR0795	-D601.dwg	
SIGN DRAWINGS					REVIEWED BY:	JJD	DRAWING NO.:			
CONSTRUCTION					APPROVED BY:	CAS	<u> </u>			
			7				8			_

OPERATIONAL MODE						
FB1 LEAD/ FB2 LAG	FB1 LAG/ FB2 LEAD	FB1 CHANGEOUT (FB2 OPEN)	FB2 CHANGEOUT (FB1 OPEN)			
OPEN	CLOSED	CLOSED	CLOSED			
CLOSED	OPEN	CLOSED	CLOSED			
CLOSED	OPEN	CLOSED	OPEN			
OPEN	CLOSED	OPEN	CLOSED			
OPEN	CLOSED	CLOSED	OPEN			
OPEN	CLOSED	CLOSED	OPEN			
OPEN	CLOSED	CLOSED	OPEN			
OPEN	OPEN CLOSED		OPEN			
CLOSED	OPEN	OPEN	CLOSED			
CLOSED	OPEN	OPEN	CLOSED			
CLOSED	OPEN	OPEN	CLOSED			
CLOSED	OPEN	OPEN	CLOSED			
CLOSED	CLOSED	CLOSED	CLOSED			
CLOSED	CLOSED	CLOSED	CLOSED			
CLOSED	OPEN	CLOSED	CLOSED			
OPEN	CLOSED	CLOSED	CLOSED			
OPEN	OPEN	OPEN	OPEN			
OPEN	OPEN	OPEN	OPEN			
OPEN	OPEN	OPEN	OPEN			

TABLE

D-01

OPERATIONAL MODE

A

В

С

APPENDIX C-1 Hydraulic Calculations

Summary of Dry Weather Seep Flow Data Chemours, Fayetteville Works, North Carolina

Summary of Dry Weather Seep Flow						
	Measured Dry Weather Flow (gpm)					
Seep Measurement Location	25 th Percentile (seasonal low flow)	Median (50 th Percentile)	95 th Percentile (seasonal high flow, and Design Basis)			
SEEP-A-1	106	129	205			
SEEP-B-1 130		149	226			
SEEP-C-1 30		42	76			
SEEP-D-1 140		150	183			

Notes:

1. Results for Seeps A, B, and C based on dry weather flow from 1/5/2019 through 5/17/2020.

2. Results for Seep D based on dry weather flow from 4/25/2020 to 5/17/2020.

Table 2.0 Series Calculated System Head Losses Through the Inlet Chamber and Influent Stilling Basin Chemours, Fayetteville Works, North Carolina

Sheet <u>Title</u>

2.1.C	SEEP-C-1: Calculated System Head Losses Through the Inlet Chamber and Influent Stilling Basin
2.2.C	SEEP-C-1: Calculated System Head Losses Through Piping in the Inlet Chamber and Influent Stilling Basin

Table 2.1.C Calculated System Head Losses Through the Inlet Chamber and Influent Stilling Basin SEEP-C-1 Chemours, Fayetteville Works, North Carolina

Flow-Through Cell Design Basis							
Description		Variable		25% Flow	50% Flow	95% Flow	Comments
Flow Dynamics		Volumetric Flow Rate, Q	(gpm)	30	42	76	Range of flows based upon dry weather seep flow data (Table 1)
110w D	ynamics	Volumetric Flow Rate, Q	(ft ³ /day)	5,775	8,085	14,630	Units conversion
		Height of overflow weir to DB	(ft)	6.5	6.5	6.5	
General		Height of emergency spillway	(ft)	6.5	6.5	6.5	
		Width of emergency spillway	(ft)	5	5	5	•
		Width of overflow weir	(ft)	3	3	3	•
	IC Weir	Height of weir crest in inlet chamber	(ft)	6	6	6	
		Width of weir crest in inlet chamber Length of inlet chamber	(ft) (ft)	3 4.67	3 4.67	3 4.67	
		Width of inlet chamber	(ft)	4.67	4.67	4.67	Design Parameters
	IC Sizing	Depth of stone in inlet chamber	(ft)	4	4	4	
		Number of geotextiles in inlet chamber	(no.)	1	4	1	
		Length of gravel bed in ISB on baffle wall side	(ft)	4.67	4.67	4.67	
	ISB Baffle Wall	Width of gravel bed in ISB on baffle wall side	(ft)	4	4	4	
		Depth of gravel bed in ISB on baffle wall side	(ft)	4	4	4	
	ISB to Filter Basin (FB) Piping	Invert of ISB transfer pipes	(ft)	6.00	6.00	6.00	
		Inlet Chamber plan view area	(ft2)	18.67	18.67	18.67	Length x Width of Inlet Chamber
		Average Inlet Chamber particle flow length	(ft)	12	12	12	Anticipated average particle flow length through the IC and upstream of ISB baffle wall.
		Surface loading rate, L	(gpm/ft2)	1.61	2.25	4.07	Calculated based on Q[Total] divided by the Filter bed area, where Q[Total] = Q[seep]+Q[overflow weir]
Flow Characteristics	Influent Chamber	Specific discharge velocity, V	ft/day	309.4	433.1	783.8	Calculated based on L (unit conversions)
		Water height over weir, h	ft	0.035	0.044	0.066	Calculated following the Francis formula for rectangular weirs, where $h = (Q/(3.367*Weir$
							Width))^(2/3)
		Water flow height into IC	ft	6.035	6.044	6.066	Height of the inlet chamber weir plus the height of the water overtopping the weir
				High K (CAC		
			1	rign K	GAC	1	Average estimate of hydraulic conductivity of ASTM #5 stone (12,000 m/day) as reported by
		K	(ft/day)	39,360	39,360	39,360	Mulqueen (The flow of water through gravels, 2005).
		i (Vertical Gradient)	(ft/ft)	0.0079	0.0110	0.0199	Based upon Darcy's Law: Minimum required vertical gradient calculated by dividing K (ft/day) by V (ft/day): values provided in ft/ft.
		Inlet Chamber gravel bed HL	(ft)	0.094	0.132	0.239	Total head loss across gravel bed calculated by multiplying the gravel bed depth by the vertical gradient.
				1.4			
		Geotextile permittivity Geotextile HL total	(sec ⁻¹) (ft)	1.4 0.0026	1.4 0.0036	1.4 0.0065	Permittivity of "typical" 6 oz/sy nonwoven geotextile.
	Influent Chamber /	Head losses through piping network	(ft)	0.0026	0.0036	0.0065	Head losses due to nonwoven geotextile (above gravel). See Table 2.2 series for estimated head losses through piping network
Head Losses	Influent Stilling	Water flow height into IC	(ft)	6.035	6.044	6.066	Height of the inlet chamber weir plus the height of the water overtopping the weir.
	Basin	Invert of ISB transfer pipes	(ft)	6.00	6.00	6.00	Invert elevation of the transfer pipes feeding the lead filter bed.
		Height of water in lead filter basin	(ft)	4.36	4.40	4.52	Height of water in lead filter basin under anticipated high K GAC conditions (see Table 3.1 Series).
							(i) If the water level in the lead filter bed exceeds the ISB transfer piping invert, the water height in the
		Height of water in Influent Stilling Basin (ISB)		6.02	2 6.03		ISB is equal to water height in the lead filter bed plus the anticipated head losses through ISB piping
			(ft)				network.
							(ii) If the water level in the lead filter basin is below the ISB transfer piping invert, the ISB water
							height is equal to the pipe invert plus the anticipated head losses through the ISB piping network.
		Height of water in Inlet Chamber (IC)	(ft)	6.11	6.17	6.35	The ISB water height plus the sum of the head losses associated with the inlet chamber gravel bed and geotextile.
	Design Objective	Maximum allowable height of water in IC	(ft)	6.5	6.5	6.5	Height of spillway
IC Water Height		Target minimum height of water in IC	(ft)	6.00	6.00	6.00	Minimum is set to provide sufficient elevation head for gravity flow through filter bed and associated
		Satisfy design constraints?		Pass	Pass	Pass	piping network. Minimum height is set at height of weir crest in inlet chamber. Water height in inlet chamber must be between the minimum and maximum thresholds.
Spillway/Overflow Weir Engagement De	Design Objective	Height of water in spillway	(ft)	0.00	0.00	0.00	Height of water overtopping spillway (if applicable).
		Spillway volumetric flow rate	(gpm)	0.00	0.00	0.00	Flow rate through bypass spillway, given by Q=C*(Channel Width)*(Water Height)^1.5, where the
		Height of water over overflow weir	(ft)	0.00	0.00	0.00	weir constant C is 2.65. Water height over overflow weir.
				0.00			Calculated following the Francis formula for rectangular weirs, where $Q = 3.367$ *(Weir
		Overflow weir volumetric flow rate	(gpm)	0	0	0	Width)*(Water Height)^1.5
		Maximum allowable spillway flow rate	(gpm)	1,500	1,500	1,500	Maximum design flow rate for the bypass spillway.
		Satisfy design constraints?		Pass	Pass	Pass	1

Table 2.1.C Calculated System Head Losses Through the Inlet Chamber and Influent Stilling Basin SEEP-C-1 Chemours, Fayetteville Works, North Carolina

			Flow-	Through Ce	ll Design Bas	is	
Descr	iption	Variable			50% Flow	95% Flow	Comments
Flow D	vnamics	Volumetric Flow Rate, Q	(gpm)	30	42	76	Range of flows based upon dry weather seep flow data (Table 1)
11011 5	Judinies	Volumetric Flow Rate, Q	(ft ³ /day)	5,775	8,085	14,630	Units conversion
		Height of overflow weir to DB	(ft)	6.5	6.5	6.5	
Gen	eral	Height of emergency spillway	(ft)	6.5	6.5	6.5	
		Width of emergency spillway	(ft)	5	5	5	
	1	Width of overflow weir	(ft)	3	3	3	
	IC Weir	Height of weir crest in inlet chamber Width of weir crest in inlet chamber	(ft) (ft)	6	6	6	
		Length of inlet chamber	(ft)	4.67	4.67	4.67	•
		Width of inlet chamber	(ft)	4.07	4.07	4.07	Design Parameters
	IC Sizing	Depth of stone in inlet chamber	(ft)	4	4	4	Dough Furtheory
Inlet Chamber (IC)		Number of geotextiles in inlet chamber	(no.)	1	1	1	
milet chamber (re)		Length of gravel bed in ISB on baffle wall side	(ft)	4.67	4.67	4.67	
	ISB Baffle Wall	Width of gravel bed in ISB on baffle wall side	(ft)	4	4	4	
	100 Dunie Wan	Depth of gravel bed in ISB on baffle wall side	(ft)	4	4	4	
	ISB to Filter Basin						
	(FB) Piping	Invert of ISB transfer pipes	(ft)	6.00	6.00	6.00	
		Inlet Chamber plan view area	(ft2)	18.67	18.67	18.67	Length x Width of Inlet Chamber
		Average Inlet Chamber particle flow length	(ft)	12	12	12	Anticipated average particle flow length through the IC and upstream of ISB baffle wall.
		Surface loading rate, L	(gpm/ft2)	1.61	2.25	4.07	Calculated based on Q[Total] divided by the Filter bed area, where Q[Total] = Q[seep]+Q[overflow
Flow Characteristics	Influent Chamber		÷.				weir]
		Specific discharge velocity, V	ft/day	309.4	433.1	783.8	Calculated based on L (unit conversions)
		Water height over weir, h	ft	0.035	0.044	0.066	Calculated following the Francis formula for rectangular weirs, where $h = (Q/(3.367*Weir Width))^{(2/3)}$
		Water flow height into IC	ft	6.035	6.044	6.066	Height of the inlet chamber weir plus the height of the water overtopping the weir
		······				0.000	I
				Low K	GAC		
		к	(ft/day)	39,360	39,360	39,360	Average estimate of hydraulic conductivity of ASTM #5 stone (12,000 m/day) as reported by
		ĸ	(II/day)	39,300	39,300	39,300	Mulqueen (The flow of water through gravels, 2005).
		i (Vertical Gradient)	(ft/ft)	0.0079	0.0110	0.0199	Based upon Darcy's Law: Minimum required vertical gradient calculated by dividing K (ft/day) by V
		((endear oradient)	(1011)	0.0077	0.0110	0.0177	(ft/day); values provided in ft/ft.
		Inlet Chamber gravel bed HL	(ft)	0.094	0.132	0.239	Total head loss across gravel bed calculated by multiplying the gravel bed depth by the vertical
		-		1.4	1.4	1.4	gradient.
		Geotextile permittivity	(sec ⁻¹)				Permittivity of "typical" 6 oz/sy nonwoven geotextile.
	Influent Chamber /	Geotextile HL total	(ft)	0.0026	0.0036	0.0065	Head losses due to nonwoven geotextile (above gravel).
Head Losses	Influent Stilling	Head losses through piping network	(ft)	0.02	0.03	0.11	See Table 2.2 series for estimated head losses through piping network
Head Losses	Basin	Water flow height into IC	(ft)	6.035	6.044	6.066	Height of the inlet chamber weir plus the height of the water overtopping the weir.
	Basin	Invert of ISB transfer pipes	(ft)	6.00	6.00	6.00	Invert elevation of the transfer pipes feeding the lead filter bed.
		Height of water in lead filter basin	(ft)	4.64	4.89	5.61	Height of water in lead filter basin under anticipated high K GAC conditions (see Table 3.1 Series).
							(i) If the water level in the lead filter bed exceeds the ISB transfer piping invert, the water height in the
			(7)	6.00	6.00		ISB is equal to water height in the lead filter bed plus the anticipated head losses through ISB piping
		Height of water in Influent Stilling Basin (ISB)	(ft)	6.02	6.03	6.11	network.
							(ii) If the water level in the lead filter basin is below the ISB transfer piping invert, the ISB water
							height is equal to the pipe invert plus the anticipated head losses through the ISB piping network.
		Height of water in Inlet Chamber (IC)	(ft)	6.11	6.17	6.35	The ISB water height plus the sum of the head losses associated with the inlet chamber gravel bed and
		5					geotextile.
IC Water Height	Design Objective	Maximum allowable height of water in IC	(ft)	6.5	6.5	6.5	Height of spillway Minimum is set to provide sufficient elevation head for gravity flow through filter bed and associated
		Target minimum height of water in IC	(ft)	6.00	6.00	6.00	piping network. Minimum height is set at height of weir crest in inlet chamber.
		Satisfy design constraints?		Pass	Pass	Pass	Water height in inlet chamber must be between the minimum and maximum thresholds.
		Height of water in spillway	(ft)	0.00	0.00	0.00	Height of water overtopping spillway (if applicable).
							Flow rate through bypass spillway, given by Q=C*(Channel Width)*(Water Height)^1.5, where the
		Spillway volumetric flow rate	(gpm)	0	0	0	weir constant C is 2.65.
Spillway/Overflow	Design Objective	Height of water over overflow weir	(ft)	0.00	0.00	0.00	Water height over overflow weir.
Weir Engagement		Overflow weir volumetric flow rate	(gpm)	0	0	0	Calculated following the Francis formula for rectangular weirs, where $Q = 3.367$ *(Weir
		Maximum allowable spillway flow rate	(gpm)	1.500	1.500	1.500	Width)*(Water Height)^1.5 Maximum design flow rate for the bypass spillway.
		Satisfy design constraints?	(gpm)	Pass	Pass	Pass	iviaxiniuni design now rate for the bypass spillway.
(batisty design constraints:		1 455	1 455	1 455	I

Table 2.2.C Calculated System Head Losses Through Piping in the Inlet Chamber and Influent Stilling Basin SEEP-C-1 Chemours, Fayetteville Works, North Carolina

		Flor	w-Through Cell I	Design Basis			
		Variable		25% Flow	50% Flow	95% Flow	Comments
		Volumetric Flow Rate, Q	(gpm)	30	42	76	Range of flows based upon dry weather seep flow data (Table 1)
Flow D	ynamics	Volumetric Flow Rate, Q	(ft ³ /dav)	5,775	8,085	14,630	Units conversion
		Number of transfer pipes from ISB to Lead FB	(no.)	4	4	4	
		Number of transfer pipes in ISB connected to manifold (FB-1 in lead)	(no.)	2	2	2	
		Number of transfer pipes in ISB connected to manifold (FB-2 in lead)	(no.)	3	3	3	
		Dia. of ISB transfer pipes	(in)	2.9	2.9	2.9	
	ISB to Filter Basin	Invert of ISB transfer pipes	(ft)	6.00	6.00	6.00	Design Parameters
	(FB) Piping	Length of ISB transfer pipes	(ft)	2	2	2	Design Furthered
		Dia. of ISB lead manifold pipe (FB-1 in lead)	(in)	3.786	3.786	3.786	
		Invert of ISB lead manifold pipe (FB-1 in lead)	(ft)	5.96	5.96	5.96	
Influent Still Basin		Length of ISB lead manifold pipe (FB-1 in lead)	(ft)	5	5	5	
		Dia. of ISB lead manifold pipe (FB-2 in lead)	(in)	3.786	3.786	3.786	
(ISB) Design		Invert of ISB lead manifold pipe (FB-2 in lead)	(ft)	5.96	5.96	5.96	
		Length of ISB lead manifold pipe (FB-2 in lead)	(ft)	7.4	7.4	7.4	
		Head loss coefficient for entrance pipe losses	(unitless)	0.5	0.5	0.5	
		Head loss coefficient for exit pipe losses	(unitless)	1	1	1	
		Head loss coefficient for 90-degree regular elbow	(unitless)	0.3	0.3	0.3	
	D's s I s s s	Head loss coefficient for regular tee fitting (straight flow)	(unitless)	0.2	0.2	0.2	
	Pipe Loss	Head loss coefficient for regular tee fitting (branch flow)	(unitless)	1.0	1.0	1.0	Typical energy loss coefficients for fluid flow through pipes (Hydraulic Losses in
	Coefficients	Head loss coefficient for fully open ball valve	(unitless)	0.05	0.05	0.05	Pipes, Kudela)
		Head loss coefficient for fully open gate valve	(unitless)	0.15	0.15	0.15	
		Head loss coefficient for half closed gate valve	(unitless)	2.1	2.1	2.1	
		Head loss coefficient for 1/4 closed gate valve	(unitless)	0.26	0.26	0.26	
		Pipe cross sectional area	(ft2)	0.046	0.046	0.046	Cross sectional area of fluid flow through transfer pipes
		Pipe velocity	(ft/s)	0.36	0.51	0.92	Volumetric flow rate divided by pipe cross sectional area; assumed even flow distribution through piping network.
		Kinematic Viscosity	(ft2/s)	1.20E-05	1.20E-05	1.20E-05	Viscosity of water at standard temperature and pressure
		Reynolds Number	(unitless)	7,300	10,300	18,600	Ratio of inertial forces to viscous forces in fluid flow
	ISB Transfer Pipe	Flow Roughness Coefficient	(ft)	8.E-06	8.E-06	8.E-06	Coefficient of fluid resistance to flow along pipe walls
	15B Hanster Fipe	Flow Friction Factor, f	(unitless)	0.034	0.031	0.026	Empirical factor for calculating head losses following Darcy-Weisbach head loss equation
		Dynamic Energy Loss- Darcy EQ	(ft)	0.001	0.001	0.003	Friction from fluid flow along walls in pipe
		Exit Losses	(ft)	0.002	0.004	0.013	Head losses due to fluid exiting transfer pipes
		Valve Losses	(ft)	0.0003	0.0006	0.0020	Head losses due to fully gate valve (1 per pipe)
		Dynamic + Minor Losses	(ft)	0.003	0.006	0.018	Summation of pipe losses in ISB transfer pipe
Influent Still Basin		Pipe cross sectional area	(ft2)	0.078	0.078	0.078	Cross sectional area of fluid flow through manifold pipe
(ISB) Design		Pipe velocity	(ft/s)	0.43	0.60	1.08	Total flow through manifold pipe assumed proportional flow distribution through piping network.
		Kinematic Viscosity	(ft2/s)	1.20E-05	1.20E-05	1.20E-05	Viscosity of water at standard temperature and pressure
		Reynolds Number	(unitless)	11,200	15,700	28,500	Ratio of inertial forces to viscous forces in fluid flow
		Flow Roughness Coefficient	(ft)	8.E-06	8.E-06	8.E-06	Coefficient of fluid resistance to flow along pipe walls
	ISB Manifold Pipe (FB-1 Lead)	Flow Friction Factor, f	(unitless)	0.030	0.028	0.024	Empirical factor for calculating head losses following Darcy-Weisbach head loss equation
		Dynamic Energy Loss- Darcy EQ	(ft)	0.0014	0.0024	0.007	Friction from fluid flow along walls in pipe
		Fitting Losses	(ft)	0.0028	0.0056	0.0182	Maximum head losses due to fluid traveling through elbow and tee fittings in the ISB manifold to the filter beds.
		Entrance Losses	(ft)	0.0014	0.0028	0.009	Head losses due to fluid entry into manifold pipe (fluid exit into transfer pipe accounted for in ISB Transfer Pipe section).

Table 2.2.C Calculated System Head Losses Through Piping in the Inlet Chamber and Influent Stilling Basin SEEP-C-1 Chemours, Fayetteville Works, North Carolina

		Flov	v-Through Cell I	Design Basis			
		Variable	19	25% Flow	50% Flow	95% Flow	Comments
El D.		Volumetric Flow Rate, Q	(gpm)	30	42	76	Range of flows based upon dry weather seep flow data (Table 1)
Flow D	ynamics	Volumetric Flow Rate, Q	(ft ³ /day)	5,775	8,085	14,630	Units conversion
		Number of transfer pipes from ISB to Lead FB	(no.)	4	4	4	
		Number of transfer pipes in ISB connected to manifold (FB-1 in lead)	(no.)	2	2	2	
		Number of transfer pipes in ISB connected to manifold (FB-2 in lead)	(no.)	3	3	3	
		Dia. of ISB transfer pipes	(in)	2.9	2.9	2.9	
	ISB to Filter Basin	Invert of ISB transfer pipes	(ft)	6.00	6.00	6.00	Design Parameters
	(FB) Piping	Length of ISB transfer pipes	(ft)	2	2	2	Design Faranciers
		Dia. of ISB lead manifold pipe (FB-1 in lead)	(in)	3.786	3.786	3.786	
		Invert of ISB lead manifold pipe (FB-1 in lead)	(ft)	5.96	5.96	5.96	
Influent Still Basin		Length of ISB lead manifold pipe (FB-1 in lead)	(ft)	5	5	5	
(ISB) Design		Dia. of ISB lead manifold pipe (FB-2 in lead)	(in)	3.786	3.786	3.786	
(ISB) Design		Invert of ISB lead manifold pipe (FB-2 in lead)	(ft)	5.96	5.96	5.96	
		Length of ISB lead manifold pipe (FB-2 in lead)	(ft)	7.4	7.4	7.4	
		Head loss coefficient for entrance pipe losses	(unitless)	0.5	0.5	0.5	
		Head loss coefficient for exit pipe losses	(unitless)	1	1	1	
		Head loss coefficient for 90-degree regular elbow	(unitless)	0.3	0.3	0.3	
	Pipe Loss Geofficiente Hea	Head loss coefficient for regular tee fitting (straight flow)	(unitless)	0.2	0.2	0.2	Typical energy loss coefficients for fluid flow through pipes (Hydraulic Losses in
		Head loss coefficient for regular tee fitting (branch flow)	(unitless)	1.0	1.0	1.0	Pipes, Kudela)
		Head loss coefficient for fully open ball valve	(unitless)	0.05	0.05	0.05	ripes, Kudela)
		Head loss coefficient for fully open gate valve	(unitless)	0.15	0.15	0.15	
		Head loss coefficient for half closed gate valve	(unitless)	2.1	2.1	2.1	
		Head loss coefficient for 1/4 closed gate valve	(unitless)	0.26	0.26	0.26	
		Pipe cross sectional area	(ft2)	0.078	0.078	0.078	Cross sectional area of fluid flow through manifold pipe
		Pipe velocity	(ft/s)	0.64	0.90	1.62	Total flow through manifold pipe assumed proportional flow distribution through
			(11/3)	0.04	0.90	1.02	piping network.
		Kinematic Viscosity	(ft2/s)	1.20E-05	1.20E-05	1.20E-05	Viscosity of water at standard temperature and pressure
		Reynolds Number	(unitless)	16,900	23,600	42,700	Ratio of inertial forces to viscous forces in fluid flow
		Flow Roughness Coefficient	(ft)	8.E-06	8.E-06	8.E-06	Coefficient of fluid resistance to flow along pipe walls
Influent Still Basin	ISB Manifold Pipe (FB-2 Lead)	Flow Friction Factor, f	(unitless)	0.027	0.025	0.022	Empirical factor for calculating head losses following Darcy-Weisbach head loss equation
(ISB) Design		Dynamic Energy Loss- Darcy EQ	(ft)	0.004	0.007	0.021	Friction from fluid flow along walls in pipe
		Fitting Losses	(ft)	0.0077	0.0150	0.0492	Maximum head losses due to fluid traveling through elbow and tee fittings in the ISB manifold to the filter beds.
		Entrance Losses	(ft)	0.003	0.006	0.020	Head losses due to fluid entry into manifold pipe (fluid exit into transfer pipe accounted for in ISB Transfer Pipe section).
		Dynamic + Minor Losses	(ft)	0.015	0.029	0.090	Summation of pipe losses in ISB manifold pipe (FB-2 lead)
	Come of Direct of		(ft)	0.02	0.03	0.11	Design to account for the maximum anticipated head losses considering either FI
	Sum of Pipe Losses	Sum of Head Losses in Piping Network from ISB to FB					1 or FB-2 is in lead position.

Table 3.0 Series Calculated System Head Losses Through the Lead Filter Basin Chemours, Fayetteville Works, North Carolina

Sheet <u>Title</u>

- 3.1.C SEEP-C-1: Calculated System Head Losses Through the Lead Filter Basin
- 3.2.C SEEP-C-1: Calculated System Head Losses Through Through Piping in the Filter Beds

Table 3.1.C Calculated System Head Losses Through the Lead Filter Basin SEEP-C-1 Chemours, Fayetteville Works, North Carolina

			Flow-Through	Cell Design B	asis		
		Variable		25% Flow	50% Flow	95% Flow	Comments
Flow D	ynamics	Volumetric Flow Rate, Q	(gpm)	30	42	76	Range of flows based upon dry weather seep flow data (Table 1)
		Volumetric Flow Rate, Q Height of cell in basin	(ft ³ /day) (ft)	5,775 7.5	8,085	14,630 7.5	Units conversion
Ger	ieral	Assumed density of carbon	(lb/ft3)	25	25	25	
	Filter Bed Weir	Height of weir crest in lead filter bed, H	(ft)	4.25	4.25	4.25	
	Filter Bed well	Width of weir crest in lead filter bed	(ft)	3	3	3	
		Width of lead filter basin	(ft)	10	10	10	
	Filter Bed Sizing	Length of lead filter basin Carbon depth in lead filter basin	(ft) (ft)	3	3	3	
Filter Bed (FB)		Gravel depth in lead filter basin	(ft)	1	1	1	Design Parameters
Design: Lead		No. of geotextiles in lead filter basin	(no.)	2	2	2	-
Design. Lead	ISB to Filter Basin Piping	Invert of ISB transfer pipes	(ft)	6.00	6.00	6.00	
	Carbon Utilization	Anticipated carbon utilization rate (AUR) of PFMOAA	(g/L)	0.157	0.157	0.157	
	Rates	Anticipated carbon utilization rate (AUR) of PMPA	(g/L)	0.163	0.163	0.163	
		Filter bed plan view area	(ft2)	100	100	100	Length x Width of filter bed
		Surface loading rate, L	(gpm/ft2)	0.30	0.42	0.76	Calculated based on Q and Filter Bed Area. Objective: $0.8 \text{ gpm/ft} > L > 0.3 \text{ gpm/ft}^2$
		Specific discharge velocity, V	ft/day	57.8	80.9	146.3	Calculated based on L (unit conversions)
		Empty Bed Contact Time, EBCT	(min)	74.8	53.4	29.5	Calculated by dividing carbon volume by flow rate.
		Empty Bed Contact Time, EBC1	(1111)	/4.0	55.4	27.5	Objective: 60 minutes > EBCT > 30 minutes
		Carbon utilization	(lb/yr)	21,449	30,029	54,338	Calculated by multiplying AUR and Q (units conversions applied). See
Flow Characteristics	Lead Filter Basin	Changeout Frequency	(days)	128	91	50	Attachment A Isotherm Data. Calculated by dividing carbon mass by carbon utilization (units conversions applied).
			(,-)				Objective: 45 days < Average changeout frequency < 90 days
		Porosity of GAC	(unitless)	0.4	0.4	0.4	Assumed porosity of GAC.
		Effective grain size	(mm)	0.65	0.65	0.65	Effective grain size based on Calgon F400 literature.
		Reynolds Number	(unitless)	0.30	0.42	0.75	Reynolds Number to verify validity of applying Darcy's Law for estimating head losses. Assumption valid for Re # < 1.
		Water height over weir, h	ft	0.035	0.044	0.066	Calculated following the Francis formula for rectangular weirs, where $h = (Q/(3.367*Weir Width))^{(2/3)}$
		Water flow height, H + h	ft	4.285	4.294	4.316	Height of the lead transfer basin weir plus the height of the water
		that not heged, if the		11205	1.291	1.510	overtopping the weir
			High	K GAC			
		К	(ft/day)	2,400	2,400	2,400	K values based on Calgon F400 literature for clean bed.
		i (Vertical Gradient) through carbon	(ft/ft)	0.0241	0.0337	0.0610	Based upon Darcy's Law: Minimum required vertical gradient calculated by dividing K (ft/dav) by V (ft/dav); values provided in ft/ft.
		Carbon bed HL	(ft)	0.072	0.101	0.183	Total head loss across carbon bed calculated by multiplying the carbon bed depth by the minimum vertical gradient.
		Gravel bed HL	(ft)	0.001	0.002	0.004	Average estimate of hydraulic conductivity of ASTM #5 stone (12,000 m/day) as reported by Mulqueen (The flow of water through gravels, 2005).
		Geotextile permittivity	(sec ⁻¹)	1.4	1.4	1.4	Permittivity of "typical" 6 oz/sy nonwoven geotextile.
		Geotextile HL total	(ft)	0.0010	0.0013	0.0024	Head losses due to nonwoven geotextile (one above carbon + one above gravel).
	Lead Filter Basin	Head losses through piping network	(ft)	0.003	0.005	0.016	See Table 3.2 series for estimated head losses through piping network from the lead filter basin to the transfer basin
		Flow Through Cell HL Total	(ft)	0.077	0.110	0.205	Cumulative head losses across flow-through cell.
Head Losses		Height of water in lag filter basin	(ft)	4.11	4.15	4.27	Height of water in lag filter basin under anticipated high K GAC conditions
Head Losses		Height of water in lead filter basin	(ft)	4.36	4.40	4.52	(i) If the water height in lag basin exceeds the height of the lead filter basin weir, then the height equals the sum of water height in the lag basin plus the anticipated head losses through filter basin and transfer basin piping. (ii) If the water height in the lag basin is less than the height of lead filter basin weir, then the height equals the sum of the water height over the weir plus the anticipated head losses through the filter basin and transfer basin piping.
		Height of water in Influent Stilling Basin (ISB)	(ft)	6.02	6.03	6.11	Height of water in influent stilling basin (see Table 2.1 series)
		Head losses through ISB piping network	(ft)	0.02	0.03	0.11	See Table 2.2 series for estimated head losses through ISB piping network
	Design Objective	Hydraulic gradient between ISB and lead filter basin Minimum height of water in lead filter basin	(ft) (ft)	4.25	4.25	4.25	Head difference between the influent stilling basin and the lead filter basin. To maintain saturated carbon cell and allow for sufficient elevation head for
			(ft)				gravity flow through lag filter bed. Height of water must exceed minimum allowable height and a positive
		Satisfy design constraints?		Pass	Pass	Pass	hydraulic gradient (i.e., >0 ft) exist between the ISB and filter basin

Table 3.1.C Calculated System Head Losses Through the Lead Filter Basin SEEP-C-1 Chemours, Fayetteville Works, North Carolina

			Flow-Through				
		Variable		25% Flow	50% Flow	95% Flow	Comments
Flow D	ynamics	Volumetric Flow Rate, Q	(gpm)	30 5,775	42	76	Range of flows based upon dry weather seep flow data (Table 1)
		Volumetric Flow Rate, Q Height of cell in basin	(ft ³ /day) (ft)	7.5	8,085 7.5	14,630 7.5	Units conversion
Ger	neral	Assumed density of carbon	(lb/ft3)	25	25	25	
	Eliza De I Wein	Height of weir crest in lead filter bed, H	(ft)	4.25	4.25	4.25	
	Filter Bed Weir	Width of weir crest in lead filter bed	(ft)	3	3	3	
		Width of lead filter basin	(ft)	10	10	10	
	E1. D. 16	Length of lead filter basin	(ft)	10	10	10	
	Filter Bed Sizing	Carbon depth in lead filter basin	(ft) (ft)	3	3	3	Design Basematers
Filter Bed (FB)		Gravel depth in lead filter basin No. of geotextiles in lead filter basin	(III) (no.)	2	2	2	Design Parameters
Design: Lead	ISB to Filter Basin	Invert of ISB transfer pipes	(ft)	6.00	6.00	6.00	
	Piping Carbon Utilization	Anticipated carbon utilization rate (AUR) of	(g/L)	0.157	0.157	0.157	
	Rates	PFMOAA Anticipated carbon utilization rate (AUR) of PMPA	(g/L)	0.163	0.163	0.163	
		Filter bed plan view area	(ft2)	100	100	100	Length x Width of filter bed
		Surface loading rate, L	(gpm/ft2)	0.30	0.42	0.76	Calculated based on Q and Filter Bed Area.
			ft/day	57.8	80.9	146.3	Objective: $0.8 \text{ gpm/ft} > L > 0.3 \text{ gpm/ft}$
		Specific discharge velocity, V	n/day				Calculated based on L (unit conversions) Calculated by dividing carbon volume by flow rate.
		Empty Bed Contact Time, EBCT	(min)	74.8	53.4	29.5	Objective: 60 minutes > EBCT > 30 minutes
		Carbon utilization	(lb/yr)	21,449	30,029	54,338	Calculated by multiplying AUR and Q (units conversions applied). See Attachment A Isotherm Data.
Flow Characteristics	Lead Filter Basin	Changeout Frequency	(days)	128	91	50	Calculated by dividing carbon mass by carbon utilization (units conversion: applied).
		Porosity of GAC	(unitless)	0.4	0.4	0.4	Objective: 45 days < Average changeout frequency < 90 days Assumed porosity of GAC.
		Effective grain size	(mm)	0.65	0.65	0.4	Effective grain size based on Calgon F400 literature.
		Reynolds Number	(unitless)	0.30	0.42	0.75	Reynolds Number to verify validity of applying Darcy's Law for estimating
		Water height over weir, h	ft	0.035	0.044	0.066	head losses. Assumption valid for Re $\# < 1$. Calculated following the Francis formula for rectangular weirs, where $h = (O(3.367*Weir Width))^{2}(2/3)$
		Water flow height, H + h	ft	4.285	4.294	4.316	Height of the lead transfer basin weir plus the height of the water overtopping the weir
		-					
			Low	K GAC		1	
		К	(ft/day)	600	600	600	Assumes that the conductivity of the clean carbon bed could decrease by a factor of 4 during operation.
		i (Vertical Gradient) through carbon	(ft/ft)	0.0963	0.1348	0.2438	Based upon Darcy's Law: Minimum required vertical gradient calculated by
		Carbon bed HL	(0)				dividing K (it/day) by V (it/day); values provided in it/it.
		Curbon bed The	(ft)	0.289	0.404	0.732	dividing K (ft/dav) by V (ft/dav); values provided in ft/ft. Total head loss across carbon bed calculated by multiplying the carbon bed death by the minimum vartical gradient
		Gravel bed HL	(ft) (ft)	0.289	0.404	0.732	Total head loss across carbon bed calculated by multiplying the carbon bed denth by the minimum vertical gradient. The average estimate of hydraulic conductivity of ASTM #5 stone (12,000 m/day) as reported by Mulqueen (The flow of water through gravels, 2005)
							Total head loss across carbon bed calculated by multiplying the carbon bed depth by the minimum vertical gradient. The average estimate of hydraulic conductivity of ASTM #5 stone (12,000
	Les Plus Desig	Gravel bed HL	(ft)	0.006	0.008	0.015	Total head loss across carbon bed calculated by multiplying the carbon bed denth by the minimum vertical eradient. The average estimate of hydraulic conductivity of ASTM #5 stone (12,000 m/day) as reported by Mulqueen (The flow of water through gravels, 2005) reduced by a factor of 4 during operation.
	Lead Filter Basin	Gravel bed HL Geotextile permittivity	(ft) (sec ⁻¹)	0.006	0.008	0.015	Total heeal loss across carbon bed calculated by multiplying the carbon bed denth by the minimum vertical eradient. The average estimate of hydraulic conductivity of ASTM #5 stone (12,000 m/day) as reported by Mulqueen (The flow of water through gravels, 2005) reduced by a factor of 4 durine coneration. Permittivity of "typical" 6 oz/sy nonwoven geotextile, reduced by a factor or 4. Head losses due to nonwoven geotextile (one above carbon + one above gravel). See Table 3.2 series for estimated head losses through piping network from
	Lead Filter Basin	Gravel bed HL Geotextile permittivity Geotextile HL total	(ft) (sec ⁻¹) (ft)	0.006	0.008 0.4 0.0053	0.015 0.4 0.0097	Total head loss across carbon bed calculated by multiplying the carbon bed death by the minimum vertical gradient. The average estimate of hydraulic conductivity of ASTM #5 stone (12,000 m/day) as reported by Mulqueen (The flow of water through gravels, 2005) reduced by a factor of 4 during constain. Permittivity of "typical" 6 oz/sy nonwoven geotextile, reduced by a factor or 4. Head losses due to nonwoven geotextile (one above carbon + one above gravel). See Table 3.2 series for estimated head losses through piping network from the lead filter basin to the transfer basin
Head Losses	Lead Filter Basin	Gravel bed HL Geotextile permittivity Geotextile HL total Head losses through piping network	(ft) (sec ⁻¹) (ft) (ft)	0.006 0.4 0.0038 0.003	0.008 0.4 0.0053 0.005	0.015 0.4 0.0097 0.016	Total heeal loss across carbon bed calculated by multiplying the carbon bed denth by the minimum vertical eradient. The average estimate of hydraulic conductivity of ASTM #5 stone (12,000 m/day) as reported by Mulqueen (The flow of water through gravels, 2005) reduced by a factor of 4 durine coneration. Permittivity of "typical" 6 oz/sy nonwoven geotextile, reduced by a factor or 4. Head losses due to nonwoven geotextile (one above carbon + one above gravel). See Table 3.2 series for estimated head losses through piping network from
Head Losses	Lead Filter Basin	Gravel bed HL Geotextile permittivity Geotextile HL total Head losses through piping network Flow Through Cell HL Total	(ft) (ft) (ft) (ft) (ft)	0.006 0.4 0.0038 0.003 0.301	0.008 0.4 0.0053 0.005 0.423	0.015 0.4 0.0097 0.016 0.772	Total head loss across carbon bed calculated by multiplying the carbon bed death by the minimum vertical gradient. The average estimate of hydraulic conductivity of ASTM #5 stone (12,000 m/day) as reported by Mulqueen (The flow of water through gravels, 2005) reduced by a factor of 4 during constraino. Permittivity of "typical" 6 oz/sy nonwoven geotextile, reduced by a factor or 4. Head losses due to nonwoven geotextile (one above carbon + one above gravel). See Table 3.2 series for estimated head losses through piping network from the lead filter basin to the transfer basin Cumulative head losses across flow-through cell.
Head Losses	Lead Filter Basin	Gravel bed HL Geotextile permittivity Geotextile HL total Head losses through piping network Flow Through Cell HL Total Height of water in lag filter basin Height of water in lead filter basin	(ft) (sec ⁻¹) (ft) (ft) (ft) (ft)	0.006 0.4 0.0038 0.003 0.301 4.34	0.008 0.4 0.0053 0.005 0.423 4.47	0.015 0.4 0.0097 0.016 0.772 4.84	Total head loss across carbon bed calculated by multiplying the carbon bed denth by the minimum vertical eradient. The average estimate of hydraulic conductivity of ASTM #5 stone (12,000 m/day) as reported by Mulqueen (The flow of water through gravels, 2005) reduced by a factor of 4 durine coneration. Permittivity of "typical" 6 oz/sy nonwoven geotextile, reduced by a factor of 4. Head losses due to nonwoven geotextile (one above carbon + one above gravel). See Table 3.2 series for estimated head losses through piping network from the lead filter basin to the transfer basin Cumulative head losses across flow-through cell. Height of water in lag filter basin under anticipated low K GAC conditions (i) If the water height in lag basin exceeds the height of the lead filter basin weir, then the height equals the sum of water height in the lag basin piping. (ii) If the water height quals the sum of the weir height of lead filter basin weir, then the height equals the sum of the weir height plus the anticipated head losses through filter basin and transfer basin piping. (ii) If the water height quals the sum of the weir height plus the anticipated head losses through the filter basin and transfer basin piping.
Head Losses	Lead Filter Basin	Gravel bed HL Geotextile permittivity Geotextile HL total Head losses through piping network Flow Through Cell HL Total Height of water in lag filter basin	(ft) (sec ⁻¹) (ft) (ft) (ft) (ft)	0.006 0.4 0.0038 0.003 0.301 4.34 4.64	0.008 0.4 0.0053 0.005 0.423 4.47 4.89	0.015 0.4 0.0097 0.016 0.772 4.84 5.61	Total heeal loss across carbon bed calculated by multiplying the carbon bed denth by the minimum vertical eradient. The average estimate of hydraulic conductivity of ASTM #5 stone (12,000 m/day) as reported by Mulqueen (The flow of water through gravels, 2005) reduced by a factor of 4 durine coneration. Permittivity of "typical" 6 oz/sy nonwoven geotextile, reduced by a factor of 4. Head losses due to nonwoven geotextile (one above carbon + one above gravel). See Table 3.2 series for estimated head losses through piping network from the lead filter basin to the transfer basin Cumulative head losses across flow-through cell. Height of water in lag filter basin under anticipated low K GAC conditions (i) If the water height in lag basin exceeds the height of the lead filter basin weir, then the height quals the sum of water height in the lag basin piping. (ii) If the water height quals the sum of water height no the lead filter basin and transfer basin piping. (ii) If the water height quals the sum of water height of lead filter basin weir, then the height equals the sum of water height no flead filter basin weir, then the height quals the sum of water height no flead filter basin weir, then the height equals the sum of the weir height plus the
Head Losses	Lead Filter Basin	Gravel bed HL Geotextile permittivity Geotextile HL total Head losses through piping network Flow Through Cell HL Total Height of water in lag filter basin Height of water in lead filter basin Height of water in Influent Stilling Basin (ISB)	(ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	0.006 0.4 0.0038 0.003 0.301 4.34 4.64	0.008 0.4 0.0053 0.005 0.423 4.47 4.89 6.03	0.015 0.4 0.0097 0.016 0.772 4.84 5.61 6.11	Total head loss across carbon bed calculated by multiplying the carbon bed denth by the minimum vertical aradient. The average estimate of hydraulic conductivity of ASTM #5 stone (12,000 mvday) as reported by Mulqueen (The flow of water through gravels, 2005) reduced by a factor of 4 durine oneration. Permittivity of "typical" 6 oz/sy nonwoven geotextile, reduced by a factor of 4 Head losses due to nonwoven geotextile (one above carbon + one above gravel). See Table 3.2 series for estimated head losses through piping network from the lead filter basin to the transfer basin Cumulative head losses across flow-through cell. Height of water in lag filter basin under anticipated low K GAC conditions (i) If the water height in the gasin exceeds the height of the lead filter basin weir, then the height equals the sum of water height in the lag basin plus the anticipated head losses through filter basin and transfer basin piping. (ii) If the water height equals the sum of the weir height of late filter basin weir, then the height equals the sum of the weir height plus the anticipated head losses through filter basin and transfer basin piping. Height of water in influent stilling basin (see Table 2.1 series)
Head Losses	Lead Filter Basin	Gravel bed HL Geotextile permittivity Geotextile HL total Head losses through piping network Flow Through Cell HL Total Height of water in lag filter basin Height of water in lead filter basin Height of water in lead filter basin Height of water in Influent Stilling Basin (ISB) Head losses through ISB piping network	(ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	0.006 0.4 0.0038 0.003 0.301 4.34 4.64 6.02 0.02	0.008 0.4 0.0053 0.005 0.423 4.47 4.89 6.03 0.03	0.015 0.4 0.0097 0.016 0.772 4.84 5.61 6.11 0.11	Total head loss across carbon bed calculated by multiplying the carbon bed denth by the minimum vertical gradient. The average estimate of hydraulic conductivity of ASTM #5 stone (12,000 m/day) as reported by Mulqueen (The flow of water through gravels, 2005) reduced by a factor of 4 durine coneration. Permittivity of "typical" 6 oz/sy nonwoven geotextile, reduced by a factor of 4 Head losses due to nonwoven geotextile (one above carbon + one above gravel). See Table 3.2 series for estimated head losses through piping network from the lead filter basin to the transfer basin Cumulative head losses across flow-through cell. Height of water in lag filter basin under anticipated low K GAC conditions (i) If the water height in the gasain exceeds the height of the lead filter basin weir, then the height equals the sum of water height in the lag basin plus the anticipated head losses through filter basin and transfer basin piping. (ii) If the water height in the lag basin is less than the height of lead filter basin weir, then the height equals the sum of the weir height plus the anticipated head losses through the filter basin and transfer basin piping. Height of water in influent stilling basin (see Table 2.1 series) See Table 2.2 series for estimated head losses through ISB piping network

			Flow-Through (Cell Design Basis	5		
		Variable		25% Flow	50% Flow	95% Flow	Comments
		Volumetric Flow Rate, Q	(gpm)	30	42	76	Range of flows based upon dry weather seep flow data (Table 1)
Flow D	ynamics	Volumetric Flow Rate, Q	(ft ³ /day)	5,775	8,085	14,630	Units conversion
		No. of pipes to transfer basin (TB)	(no.)	4	4	4	
		Dia. of transfer pipes	(in)	5.709	5.709	5.709	
		Offset distance between each pipe in filter bed	(ft)	1.6	1.6	1.6	
		Length of perf. pipe from filter bed to TB (horizontal)	(ft)	12	12	12	
		Length of solid pipe from filter bed to TB (vertical)	(ft)	2.75	2.75	2.75	
		No. of perforations per foot	(no./ft)	12	12	12	
		Dia. of perforations	(in)	0.25	0.25	0.25	
	Filter Bed Piping	No. of feeder pipes to manifold in transfer basin per bed	(no.)	4	4	4	Design Parameters
	I nici bed I iping	Dia. of TB manifold pipe	(in)	7.57	7.57	7.57	Design Futurieters
		Length of TB manifold pipe	(ft)	12	12	12	
Filter Bed (FB)		Invert of TB manifold pipe	(ft)	2.75	2.75	2.75	
Design: Lead/Lag		Length of manifold from TB to ESB	(ft)	11.7	11.7	11.7	
		Width of filter basin	(ft)	10	10	10	
		Length of filter basin	(ft)	10	10	10	
		Carbon depth in filter basin	(ft)	3	3	3	-
		Gravel depth in filter basin	(ft)	1	1	1	
		Head loss coefficient for entrance pipe losses	(unitless)	0.5	0.5	0.5	-
	D' 1	Head loss coefficient for exit pipe losses	(unitless)	1	1	1	
	Pipe Loss	Head loss coefficient for 90-degree regular elbow	(unitless)	0.3	0.3	0.3	Typical energy loss coefficients for fluid flow through pipes (Hydraulic Losses
	Coefficients	Head loss coefficient for regular tee fitting	(unitless)	0.2	0.2		in Pipes, Kudela)
		Head loss coefficient for regular tee fitting (branch flow)	(unitless)	1.0	1.0	1.0	
		Head loss coefficient for fully open gate valve	(unitless)	0.15	0.15	0.15	
		Pipe cross sectional area	(ft2)	0.178	0.178	0.178	Cross sectional area of conveyance pipe leading to manifold in transfer basin
		Perforation cross sectional area	(ft2)	0.00034	0.00034	0.00034	Cross sectional area of fluid flow through conveyance pipe perforations
		Pipe velocity	(ft/s)	0.09	0.13	0.24	Volumetric flow rate dived by pipe cross sectional area; assumed even flow distribution through piping network.
		Average Hydraulic Residence Time	(days)	14.4	20.2	36.6	Calculated by dividing volume of carbon + gravel by flow rate.
							Volume of water equally distributed in flow cell per unit length of pipe (1-ft)
		Volumetric Flow Rate at each perforation, per unit length	(ft3/s)	7.7E-07	5.5E-07	3.0E-07	divided by average hydraulic residence time in the flow through cell. This value
	Filter Bed	of pipe; Q_0					is divided by the number of perforations in a unit length of pipe.
Filter Bed (FB)	Conveyance Piping	Kinematic Viscosity	(ft2/s)	1.20E-05	1.20E-05	1.20E-05	Viscosity of water at standard temperature and pressure
Design: Lead	(Lead Bed)	Reynolds Number	(unitless)	3,700	5,200	9,400	Ratio of inertial forces to viscous forces in fluid flow
	(Lead Bed)	Flow Roughness Coefficient	(ft)	8.E-06	8.E-06	8.E-06	Coefficient of fluid resistance to flow along pipe walls
		Flow Friction Factor, f	(unitless)	0.042	0.037	0.032	Empirical factor for calculating head losses following Darcy-Weisbach head loss equation
		Dynamic Energy Loss- Darcy EQ	(ft)	0.0002	0.0003	0.0009	Friction from fluid flow along walls in pipe
		Entrance Loss	(ft)	0.0001	0.0001	0.0004	Head losses due to fluid entering the conveyance pipe
		Fittings Losses	(ft)	0.00004	0.00008	0.00026	Head losses due to fluid traveling through elbow fittings to the manifold in the transfer basin.
		Losses due to piping perforations	(ft)	1.1E-05	5.8E-06	1.8E-06	Head losses due to water entering the piping perforations
		Dynamic + Minor Losses	(ft)	0.0003	0.001		Summation of pipe losses in filter bed conveyance pipes

			Flow-Through (Cell Design Basis			
		Variable		25% Flow	50% Flow	95% Flow	Comments
		Volumetric Flow Rate, Q	(gpm)	30	42	76	Range of flows based upon dry weather seep flow data (Table 1)
Flow D	ynamics	Volumetric Flow Rate, Q	(ft ³ /day)	5,775	8,085	14,630	Units conversion
		No. of pipes to transfer basin (TB)	(no.)	4	4	4	
		Dia. of transfer pipes	(in)	5.709	5.709	5.709	
		Offset distance between each pipe in filter bed	(ft)	1.6	1.6	1.6	
		Length of perf. pipe from filter bed to TB (horizontal)	(ft)	12	12	12	
		Length of solid pipe from filter bed to TB (vertical)	(ft)	2.75	2.75	2.75	
		No. of perforations per foot	(no./ft)	12	12	12	
		Dia. of perforations	(in)	0.25	0.25	0.25	
	Filter Bed Piping	No. of feeder pipes to manifold in transfer basin per bed	(no.)	4	4	4	Design Parameters
	Finer Bed Fiping	Dia. of TB manifold pipe	(in)	7.57	7.57	7.57	Design Latameters
		Length of TB manifold pipe	(ft)	12	12	12	
Filter Bed (FB)		Invert of TB manifold pipe	(ft)	2.75	2.75	2.75	
Design: Lead/Lag		Length of manifold from TB to ESB	(ft)	11.7	11.7	11.7	
		Width of filter basin	(ft)	10	10	10	
		Length of filter basin	(ft)	10	10	10	
		Carbon depth in filter basin	(ft)	3	3	3	
		Gravel depth in filter basin	(ft)	1	1	1	
		Head loss coefficient for entrance pipe losses	(unitless)	0.5	0.5	0.5	
		Head loss coefficient for exit pipe losses	(unitless)	1	1	1	
	Coefficients	Head loss coefficient for 90-degree regular elbow	(unitless)	0.3	0.3	0.3	Typical energy loss coefficients for fluid flow through pipes (Hydraulic Losses
		Head loss coefficient for regular tee fitting	(unitless)	0.2	0.2		in Pipes, Kudela)
		Head loss coefficient for regular tee fitting (branch flow)	(unitless)	1.0	1.0	1.0	
		Head loss coefficient for fully open gate valve	(unitless)	0.15	0.15	0.15	
		Pipe cross sectional area	(ft2)	0.312	0.312	0.312	Cross sectional area of manifold pipe in transfer basin
		Pipe velocity	(ft/s)	0.21	0.30	0.54	Total flow within basin is assumed to travel through the entire manifold pipe.
		Kinematic Viscosity	(ft2/s)	1.20E-05	1.20E-05	1.20E-05	Viscosity of water at standard temperature and pressure
		Reynolds Number	(unitless)	11,200	15,700	28,500	Ratio of inertial forces to viscous forces in fluid flow
		Flow Roughness Coefficient	(ft)	8.E-06	8.E-06	8.E-06	Coefficient of fluid resistance to flow along pipe walls
	Filter Bed Manifold	Flow Friction Factor, f	(unitless)	0.030	0.027	0.024	Empirical factor for calculating head losses following Darcy-Weisbach head loss equation
	Piping (Lead Bed)	Dynamic Energy Loss- Darcy EQ	(ft)	0.0004	0.001		Friction from fluid flow along walls in pipe
Filter Bed (FB) Design: Lead	1 0	Exit Losses	(ft)	0.001	0.001	0.005	Head losses due to fluid exiting out of manifold pipe (fluid entry accounted for in Filter Bed Conveyance Piping section).
		Valve Losses	(ft)	0.0001	0.0002	0.0007	Head losses due to fluid traveling through fully open gate valve to the transfer basin.
		Fittings Losses	(ft)	0.0011	0.0022	0.0073	Head losses due to fluid traveling through tee fittings in the manifold in the transfer basin.
		Dynamic + Minor Losses	(ft)	0.002	0.005	0.015	Summation of pipe losses in transfer basin manifold pipe (lead bed)
	Combined Filter Bed Piping (Lead Bed)	Sum of Head Losses in Piping Network From FB to TB	(ft)	0.003	0.005	0.016	Summation of pipe losses in conveyance piping of FB including manifold in TB (lead bed)

			Flow-Through (Cell Design Basis			
		Variable		25% Flow	50% Flow	95% Flow	Comments
		Volumetric Flow Rate, Q	(gpm)	30	42	76	Range of flows based upon dry weather seep flow data (Table 1)
Flow D	ynamics	Volumetric Flow Rate, Q	(ft ³ /day)	5,775	8,085	14,630	Units conversion
		No. of pipes to transfer basin (TB)	(no.)	4	4	4	
		Dia. of transfer pipes	(in)	5.709	5.709	5.709	
		Offset distance between each pipe in filter bed	(ft)	1.6	1.6	1.6	
		Length of perf. pipe from filter bed to TB (horizontal)	(ft)	12	12	12	
		Length of solid pipe from filter bed to TB (vertical)	(ft)	2.75	2.75	2.75	
		No. of perforations per foot	(no./ft)	12	12	12	
		Dia. of perforations	(in)	0.25	0.25	0.25	
	Filter Bed Piping	No. of feeder pipes to manifold in transfer basin per bed	(no.)	4	4	4	Design Parameters
	The bearping	Dia. of TB manifold pipe	(in)	7.57	7.57	7.57	Design Futurioters
		Length of TB manifold pipe	(ft)	12	12	12	
Filter Bed (FB)		Invert of TB manifold pipe	(ft)	2.75	2.75	2.75	
Design: Lead/Lag		Length of manifold from TB to ESB	(ft)	11.7	11.7	11.7	
		Width of filter basin	(ft)	10	10	10	
		Length of filter basin	(ft)	10	10	10	
		Carbon depth in filter basin	(ft)	3	3	3	
		Gravel depth in filter basin	(ft)	1	1	1	
		Head loss coefficient for entrance pipe losses	(unitless)	0.5	0.5	0.5	
	D' 1	Head loss coefficient for exit pipe losses	(unitless)	1	1	1	
	Pipe Loss	Head loss coefficient for 90-degree regular elbow	(unitless)	0.3	0.3	0.3	Typical energy loss coefficients for fluid flow through pipes (Hydraulic Losses
	Coefficients	Head loss coefficient for regular tee fitting	(unitless)	0.2	0.2		in Pipes, Kudela)
		Head loss coefficient for regular tee fitting (branch flow)	(unitless)	1.0	1.0	1.0	
		Head loss coefficient for fully open gate valve	(unitless)	0.15	0.15	0.15	
		Pipe cross sectional area	(ft2)	0.178	0.178	0.178	Cross sectional area of conveyance pipe leading to manifold in transfer basin
		Perforation cross sectional area	(ft2)	0.00034	0.00034	0.00034	Cross sectional area of fluid flow through conveyance pipe perforations
		Pipe velocity	(ft/s)	0.09	0.13	0.24	Volumetric flow rate dived by pipe cross sectional area; assumed even flow distribution through piping network.
		Average Hydraulic Residence Time	(days)	14.4	20.2	36.6	Calculated by dividing volume of carbon + gravel by flow rate.
							Volume of water equally distributed in flow cell per unit length of pipe (1-ft)
		Volumetric Flow Rate at each perforation, per unit length	(ft3/s)	7.7E-07	5.5E-07	3.0E-07	divided by average hydraulic residence time in the flow through cell. This value
	E'les De l	of pipe; Q_0					is divided by the number of perforations in a unit length of pipe.
Filter Bed (FB)	Filter Bed	Kinematic Viscosity	(ft2/s)	1.20E-05	1.20E-05	1.20E-05	Viscosity of water at standard temperature and pressure
Design: Lag	Conveyance Piping	Reynolds Number	(unitless)	3,700	5,200		Ratio of inertial forces to viscous forces in fluid flow
	(Lag Bed)	Flow Roughness Coefficient	(ft)	8.E-06	8.E-06	8.E-06	Coefficient of fluid resistance to flow along pipe walls
		Flow Friction Factor, f	(unitless)	0.042	0.037	0.032	Empirical factor for calculating head losses following Darcy-Weisbach head loss equation
		Dynamic Energy Loss- Darcy EQ	(ft)	0.0002	0.0003	0.0009	Friction from fluid flow along walls in pipe
		Entrance Loss	(ft)	0.0001	0.0001		Head losses due to fluid entering the conveyance pipe
							Head losses due to fluid traveling through elbow fittings to the manifold in the
		Fittings Losses	(ft)	0.00004	0.00008	0.00026	transfer basin.
		Losses due to piping perforations	(ft)	1.1E-05	5.8E-06	1.8E-06	Head losses due to water entering the piping perforations
	1	Dynamic + Minor Losses	(ft)	0.0003	0.0005		Summation of pipe losses in filter bed conveyance pipes

			Flow-Through (Cell Design Basis			
		Variable		25% Flow	50% Flow	95% Flow	Comments
		Volumetric Flow Rate, Q	(gpm)	30	42	76	Range of flows based upon dry weather seep flow data (Table 1)
Flow D	ynamics	Volumetric Flow Rate, Q	(ft ³ /day)	5,775	8,085	14,630	Units conversion
		No. of pipes to transfer basin (TB)	(no.)	4	4	4	
		Dia. of transfer pipes	(in)	5,709	5.709	5.709	
		Offset distance between each pipe in filter bed	(ft)	1.6	1.6	1.6	
		Length of perf. pipe from filter bed to TB (horizontal)	(ft)	12	12	12	
		Length of solid pipe from filter bed to TB (vertical)	(ft)	2.75	2.75	2.75	
		No. of perforations per foot	(no./ft)	12	12	12	
		Dia. of perforations	(in)	0.25	0.25	0.25	
	Filter Bed Piping	No. of feeder pipes to manifold in transfer basin per bed	(no.)	4	4	4	Design Parameters
	Filler bed Fiping	Dia. of TB manifold pipe	(in)	7.57	7.57	7.57	Design Latameters
		Length of TB manifold pipe	(ft)	12	12	12	
Filter Bed (FB)		Invert of TB manifold pipe	(ft)	2.75	2.75	2.75	
Design: Lead/Lag		Length of manifold from TB to ESB	(ft)	11.7	11.7	11.7	
		Width of filter basin	(ft)	10	10	10	
		Length of filter basin	(ft)	10	10	10	
		Carbon depth in filter basin	(ft)	3	3	3	
		Gravel depth in filter basin	(ft)	1	1	1	
		Head loss coefficient for entrance pipe losses	(unitless)	0.5	0.5	0.5	
		Head loss coefficient for exit pipe losses	(unitless)	1	1	1	
	Pipe Loss	Head loss coefficient for 90-degree regular elbow	(unitless)	0.3	0.3	0.3	Typical energy loss coefficients for fluid flow through pipes (Hydraulic Losses
	Coefficients	Head loss coefficient for regular tee fitting	(unitless)	0.2	0.2	0.2	in Pipes, Kudela)
		Head loss coefficient for regular tee fitting (branch flow)	(unitless)	1.0	1.0	1.0	
		Head loss coefficient for fully open gate valve	(unitless)	0.15	0.15	0.15	
		Pipe cross sectional area	(ft2)	0.312	0.312	0.312	Cross sectional area of manifold pipe in transfer basin
		Pipe velocity	(ft/s)	0.21	0.30	0.54	Total flow within basin is assumed to travel through the entire manifold pipe.
		Kinematic Viscosity	(ft2/s)	1.20E-05	1.20E-05	1.20E-05	Viscosity of water at standard temperature and pressure
		Reynolds Number	(unitless)	11,200	15,700	28,500	Ratio of inertial forces to viscous forces in fluid flow
		Flow Roughness Coefficient	(ft)	8.E-06	8.E-06	8.E-06	Coefficient of fluid resistance to flow along pipe walls
	Filter Bed Manifold	Flow Friction Factor, f	(unitless)	0.030	0.027	0.024	Empirical factor for calculating head losses following Darcy-Weisbach head loss equation
Filter Bed (FB)	Piping (Lag Bed)	Dynamic Energy Loss- Darcy EQ	(ft)	0.001	0.001	0.004	Friction from fluid flow along walls in pipe
Design: Lag	1 0 0 0	Exit Losses	(ft)	0.001	0.001	0.005	Head losses due to fluid exiting out of manifold pipe into effluent stilling basin (fluid entry accounted for in Filter Bed Conveyance Piping section).
		Valve Losses	(ft)	0.0001	0.0002	0.0007	Head losses due to fluid traveling through fully open gate valve to the effluent stilling basin.
		Fittings Losses	(ft)	0.0011	0.0022	0.0073	Head losses due to fluid traveling through tee fittings in the manifold in the transfer basin.
		Dynamic + Minor Losses	(ft)	0.003	0.005	0.017	Summation of pipe losses in transfer basin manifold pipe (lag bed)
	Combined Filter Bed Piping (Lag Bed)	Sum of Head Losses in Piping Network From FB to TB	(ft)	0.003	0.006	0.018	Summation of pipe losses in conveyance piping of FB including manifold in TB to effluent stilling basin (lag bed)

Table 4.0 Series Calculated System Head Losses Through the Lag Filter Basin Chemours, Fayetteville Works, North Carolina

SheetTitle4.1.CSEEP-C-1: Calculated System Head Losses Through the Lag Filter Basin

Table 4.1.C Calculated System Head Losses Through the Lag Filter Basin SEEP-C-1 Chemours, Fayetteville Works, North Carolina

			Flow-Thr	ough Cell Des	sign Basis		
		Variable		25% Flow	50% Flow	95% Flow	Comments
1		Volumetric Flow Rate, Q	(gpm)	30	42	76	Range of flows based upon dry weather seep flow data (Table 1)
Flow D	ynamics	Volumetric Flow Rate, Q	(ft ³ /day)	5,775	8,085	14,630	Units conversion
C	eral	Height of cell in basin	(ft)	7.5	7.5	7.5	
Gen	ierai	Assumed density of carbon	(lb/ft3)	25	25	25	
	Effluent Stilling	Minimum height of weir crest in ESB	(ft)	4	4	4	
	Basin	Width of weir crest in ESB	(ft)	3	3	3	
		Width of lag filter basin	(ft)	10	10	10	
		Length of lag filter basin	(ft)	10	10	10	
Filter Bed (FB)	Filter Bed Sizing	Carbon depth in lag filter basin	(ft)	3	3	3	Design Parameters
Design: Lag		Gravel depth in lag filter basin	(ft)	1	1	1	
0 0		No. of geotextiles in lag filter basin	(no.)	2	2	2	
	Carbon Utilization	Anticipated carbon utilization rate (AUR) of	(g/L)	0.157	0.157	0.157	
	Rates	PFMOAA Anticipated carbon utilization rate (AUR) of	Э				-
	Kates	PMPA	(g/L)	0.163	0.163	0.163	
		Filter bed plan view area	(ft2)	100	100	100	Length x Width of filter bed
		Surface loading rate, L	(gpm/ft2)	0.30	0.42	0.76	Calculated based on Q and Filter Bed Area.
		÷.		57.0	00.0	146.0	Objective: $0.8 \text{ gpm/ft} > L > 0.3 \text{ gpm/ft2}$
		Specific discharge velocity, V	ft/day	57.8	80.9	146.3	Calculated based on L (unit conversions)
		Empty Bed Contact Time, EBCT	(min)	74.8	53.4	29.5	Calculated by dividing carbon volume by flow rate.
			. ,				Objective: 60 minutes > EBCT > 30 minutes Calculated by multiplying AUR and Q (units conversions applied). See
		Carbon utilization	(lb/yr)	21,449	30,029	54,338	
							Attachment A Isotherm Data. Calculated by dividing carbon mass by carbon utilization (units conversions
Flow Characteristics	Lag Filter Basin	Changaout Fragueney	(days)	128	91	50	applied).
110w Characteristics	Lag Pliter Dasin	Changeout Frequency	(uays)	120	91	50	Objective: 45 days < Average changeout frequency < 90 days
		Porosity of GAC	(unitless)	0.4	0.4	0.4	Assumed porosity of GAC.
		Effective grain size	(mm)	0.65	0.65	0.65	Effective grain size based on Calgon F400 literature.
		<u> </u>					Reynolds Number to verify validity of applying Darcy's Law for estimating
		Reynolds Number	(unitless)	0.30	0.42	0.75	head losses. Assumption valid for Re $\# < 1$.
		W7 / 1 / 1 / 1 / 1	ft	0.035	0.044	0.066	Calculated following the Francis formula for rectangular weirs, where h =
		Water height over weir, h	п	0.055	0.044	0.000	(Q/(3.367*Weir Width))^(2/3)
		Water flow height, H + h	ft	4.035	4.044	4.066	Height of the effluent stilling basin weir plus the height of the water
		water now neight, H + h	It	4.033	4.044	4.000	overtopping the weir
				High K GAC			
		K	(ft/day)	2,400	2,400	2,400	K values based on Calgon F400 literature for clean bed.
		i (Vertical Gradient) through carbon	(ft/ft)	0.0241	0.0337	0.0610	Based upon Darcy's Law: Minimum required vertical gradient calculated by
		((,				dividing K (ft/day) by V (ft/day); values provided in ft/ft.
		Carbon bed HL	(ft)	0.072	0.101	0.183	Total head loss across carbon bed calculated by multiplying the carbon bed
							depth by the minimum vertical gradient.
		Conveller d III	(6)	0.001	0.002	0.004	Average estimate of hydraulic conductivity of ASTM #5 stone (12,000 m/day)
	Lag Filter Basin	Gravel bed HL	(ft)	0.001	0.002	0.004	as reported by Mulqueen (The flow of water through gravels, 2005).
	Lag Filler Basin	Geotextile permittivity	(sec ⁻¹)	1.4	1.4	1.4	Permittivity of "typical" 6 oz/sy nonwoven geotextile.
Head Losses			(0)	0.0010	0.0012	0.0024	Head losses due to nonwoven geotextile (one above carbon + one above
		Geotextile HL total	(ft)	0.0010	0.0013	0.0024	gravel).
		Head losses through piping network	(ft)	0.003	0.006	0.018	See Table 3.2 series for estimated head losses through piping network from the
		ricad iosses unough piping network	(11)	0.005	0.000	0.018	lag filter basin to the effluent stilling basin
		Height of water in lag filter basin	(ft)	4.11	4.15	4.27	Sum of water height over effluent stilling basin weir plus anticipated head
		reight of water in lag filter basin	(11)	4.11	4.15	7.27	losses through lag filter basin to the effluent stilling basin
		Height of water in lead filter basin	(ft)	4.36	4.40	4.52	Height of water in lead basin (see Table 3.1 series) under high K GAC
	Design Objective	5					conditions.
		Minimum height of water in lag filter basin	(ft)	4	4	4	To maintain saturated carbon in lag filter basin.
		Satisfy design constraints?		Pass	Pass	Pass	Height of water must exceed minimum allowable height.

Table 4.1.C Calculated System Head Losses Through the Lag Filter Basin SEEP-C-1 Chemours, Fayetteville Works, North Carolina

Plow Dynamics Volumeric Flow Rate, Q (qi) large) 30 42 76 Regist of flows hand guide due due for the large of flows hand guide due flows				Flow-Thr	ough Cell Des			
Fibre Dynamics Volument: Piors Rate, Q (ql: dyg) 5.775 8.805 14.430 Units conversion General Billnear Stating Assamed density of carbon (0h) 2.5 2.3 2.5 4.5			Variable		25% Flow	50% Flow	95% Flow	
Ordered Availability of point and Q (if) (if) (if) (if) ANB 1/30 (if) Fibure Samod Gains' Conton (if) 1/3 7/3 7/3 1/	Flow Dr	mamics		(gpm)				
Lefter Num Assumed density of carbon (0h73) 25 25 25 Filter Stilling Beain Wall of year crest in LSB (h) 3 3 3 Filter Bol Xim Beain Wall of year crest in LSB (h) 3 3 3 Filter Bol Xim Gende doph in lig filter basin (h) 3 3 3 3 Greed doph in lig filter basin (h) 1	Flow D	ynamics	Volumetric Flow Rate, Q	(ft ³ /day)	5,775	8,085	14,630	Units conversion
Effect of Stilling Ausuned clubuly of carbon (h)(h)(h) 235 235 235 Filer Bed (FB) Boiling Wald) of Qa (filer basin (h) 10 10 10 Filer Bed (FB) Filer Bed State Wald) of Qa (filer basin (h) 1 1 1 Carbon Utilization Carbon Logic marks (h) 0.01 1.01 1 1 PMADA Carbon Utilization Carbon Utilization (h) 0.01 0.163 0.163 0.163 Rates PMADA (gp) N (h) 0.01 0.00 2 2 2 2 VerPA (gp) N (h) (gp) N (h) 0.163 0.163 0.163 0.163 0.163 Statice Losing res, L (gpm NE) (gpm NE) 0.030 0.02 0.76 Calculate based on N = 1 filter Bod Area. Statice Losing res, L (gpm NE) (gpm NE) 2.95 Calculate based on N = 1 filter Bod Area. Carbon utilization (h) (h) 7.18 8.03.4 2.95 Calculate based on N = 2 filte	Gen	neral						
Base of Webb of vertices to HSB (ft) 3 3 3 3 Filter Bed (FB) Filter Bed Size (ft) 10	Gen							
File Bd (PB) Wild of Up (Bir Dasin (fr) 10 10 10 Filer Bd (Sing) Filer Bd Sing (fr) 10 10 10 10 Design Lag Filer Bd Sing (fried Pasin Ing) (fried Pasin Ing) (fried Pasin Ing) 0.05 2.2 2.0		U						
Flue Bid (Fig) Lange for high filter basin (ft) 10 10 10 10 Design Lag Grand eight high filter basin (ft) 1 <td< td=""><td></td><td>Basin</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		Basin						
File Rot (FF) Design: Lag File Rot Simi (Free Add phin lag filter basin No. of geneticity in lag filter basin No. of geneticity in lag filter basin Retex (free Not Simi (free Add phin lag filter basin No. of geneticity) (free Add phin lag filter basin (free PMAA) (free Add phin lag filter basin (free PMAA) (free Add phin lag filter basin (free PMAA) (free PMAA) (fr		1						
Pild Rol (P) Design Lg Gravet depth in giftler basin (n), o of gotexcitics in giftler basin (n), o of gotexcitics Rates Amicipated carbon utilization rate (AUR) of (gL) (gL) 0.163 0.163 Garba Utilization Rates Amicipated carbon utilization rate (AUR) of (gL) (gL) 0.163 0.163 0.163 Startine Value Prince Value Sectific discharge velocity, V fielday 57.8 80.9 146.3 Calculated by only (duits carversions) Entry Bed Contact Time, EBCT (min) 74.8 53.4 29.5 Calculated by only (duits carversions) Flow Characteristics Chargeon Frequency (day) 21.449 30.029 54.338 Calculated by only (duits carversions applied). Sec Attachemer A boding carbon multization (unit conversions Attachemer A boding c		ł						
Design: Lag Image: Consect large lange	Filter Bed (FB)	Filter Bed Sizing						Design Parameters
Bits No. of gedexides in ing filter basin (AUR) of barrows (D) 2 2 2 2 Carbo Ulization (AUR) of barrows (G) 0.157 0.157 0.157 Aurices Aurices (g) 0.163 0.163 0.163 PMPA (g) 0.00 100 Lengths Width of filter bed Surface koaling rate, L (g) 0.33 0.42 0.76 Calculated based on Q and Filter Bed Area. Objective: 0.8 gmth > L. 0.3 gmth2 Specific discharge velocity, V fieldy 57.8 80.9 144.3 Calculated based on Q and Filter Bed Area. Objective: 0.8 gmth > L. 0.3 gmth2 Entry Bed Consct Time, EBCT (min) 7.48 53.4 2.9.5 Calculated by dividing carbon mass by carbon utilization (mits conversions applicit). Carbon utilization (b) 2.1.449 30.029 54.338 Auto-Marka Moling arbon mass by carbon utilization (mits conversions applicit). Carbon utilization in get the eight one weight, H filt 0.43 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44		ł			1			
Carbon Utilization Rates PEMOAA Anticipated carbon utilization rate (AUR) of PMPA (gL) 0.157 0.157 0.157 Research Anticipated carbon utilization rate (AUR) of PMPA (gL) 0.163 0.163 0.163 0.163 Filter bell plin view area (G2) 100 100 Langih x Width of filter hed Specific discharge velocity, V filday 57.8 80.9 146.3 Calculated based on Q and Filter Beld Area. Enpty BEI Contact Time, EBCT (min) 74.8 53.4 29.2 Objective: 0.3 gammf.2 Displantice of points >:ECT >: 20 minutes Carbon utilization (lbsyr) 21.49 30.029 54.33 Calculated by dividing carbon mass by carbon utilization (units conversions applied). See Antachiment A conferm Dan. Carbon utilization (lbsyr) 128 91 50 Objective: 45 davs < Average chaneed m Calcun Filter Dammes	Designi Eug			(no.)	2	2	2	
Prime A (g) L) (0.103 (0.103)			PFMOAA	(g/L)	0.157	0.157	0.157	
Flow Characteristic Surface loading rate, L (gpm/ft2) 0.30 0.42 0.76 Calculated based on Q and Filer Bed Area. Flow Characteristic Specific discharge velocity, V ft/day 57.8 80.9 146.3 Calculated based on L (mit conversion) Empty Bed Contact Time, EBCT (min) 74.8 53.4 29.5 Calculated by duding carbon volume by flow rate. Characteristic Lag Filter Basin Changeout Frequency (days) 21.449 30.029 54.338 Flow Characteristic Changeout Frequency (days) 12.8 91 50 Calculated by duding carbon mass by carbon utilization (mits conversions applied). Portsity of GAC (mits) 0.4 0.4 0.4 Assumed proving of GAC Calculated by duding carbon mass by carbon utilization (mits conversions applied). Reynolds Number (mits) 0.30 0.42 0.7 Bit Berley and Tabon mass by carbon utilization (mits conversions applied). Water height over weir, h ft 0.035 0.044 0.066 Officitive: 45 dins - 4 verage changeout frequency - 90 days Water height over weir, h ft f		Rates		(g/L)		0.163	0.163	
Head Losses K (gmm1c) 0.00 0.02 0.72 (box 2000) (box 200		i	Filter bed plan view area	(ft2)	100	100	100	
Head Losses K (fr/day) 57.8 80.9 10.46 Calculated base of number 1, 5.0.3 gmm/12. Head Losses Empty Bed Contact Time, EBCT (min) 74.8 53.4 29.5 Calculated by dividing carbon volume by flow rate. Flow Characteristic Lag Filter Basin Carbon utilization (blyr) 21.449 30.029 54.338 Calculated by multiplying ALR and Q (units conversions applied). See Flow Characteristic Lag Filter Basin Changeout Frequency (days) 128 91 Sectionated by dividing carbon mass by carbon utilization (units conversions applied). See Reynolds Number (unitless) 0.4 0.4 0.4 0.65 Discretere 4 days < Average chanceout frequence < 90 days		ł	Surface loading rate I	(gpm/ft2)	0.30	0.42	0.76	
Flow Characteristics Empty Bed Contact Time, EBCT (min) 74.8 53.4 29.5 Claculated by dividing carbon volume by flow rate. Objective: 60 minutes > EBCT > 30 minutes Flow Characteristics Lag Filter Basin Carbon utilization (lbyr) 21,449 30.029 54,338 Claculated by multiplying AUR and Q (unite conversions applied). See Attachment A lootherm Data. Attachment A lootherm Data. Provisity of GAC (unitless) 0.4 0.4 0.4 0.4 Assumed provisition (Units conversions applied). Porosity of GAC (unitless) 0.4 0.4 0.4 0.4 Assumed provisition (GAC. Effective grain size (mm) 0.65 0.65 Effective grain size hased on Calcon F400 incruture. Water hight over weir, h ft 0.035 0.044 0.066 Calculated F0 width for the origin of the main of the water Water how height, H + h ft 0.035 0.044 0.066 Calculated F0 width for the single pain weir plus the height of the water Vert regint of the effective grain size (ft/day) 600 600 faster of 4 during contending filter filter Bisin Water how height, H + h ft <td></td> <td>ł</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		ł						
Head Losses K (mn) (A.8) (5.3.4) (2.5.2) Objective: © minutes > EGCT > 30 minutes		ł	Specific discharge velocity, V	ft/day	57.8	80.9	146.3	
Flow Characteristics Lag Filter Bain Carbon utilization (bbyr) 21,449 30,029 54,338 Calculated by multiplying ALW and Q (units conversions applied). See Attachment A Isotherm Data. Flow Characteristics Lag Filter Bain Changeout Frequency (days) 128 91 50 applied). Objective: 43 days < Average changeout milization (units conversions applied). See Attachment A Isotherm Data.		1	Empty Bed Contact Time EBCT	(min)	74.8	53.4	20.5	Calculated by dividing carbon volume by flow rate.
Head Losses K (fit)		ł	Empty Bed Contact Time, EBC1	(11111)	/4.0	55.4	29.5	
Flow Characteristics Lag Filter Basin K Calculation (days) 128 91 50 Calculated by dividing carbon mass by carbon utilization (units conversions applied). Flow Characteristics Lag Filter Basin Changoout Prequency (days) 128 91 50 applied). Calculated by dividing carbon mass by carbon utilization (units conversions applied). Prosity of GAC (unitless) 0.4 0.4 0.4 3.8 sumed portsity of GAC. Effective grain size (mn) 0.65 0.65 Effective: srain size based on Calgon F400 literature. Reynolds Number (unitless) 0.30 0.42 0.75 Reynolds Number to verify validity of applying Darcy's Law for estimating head losses. Assumption valid for R et = 1. Water flow height, H + h ft 0.035 0.044 0.066 Calculated following the Francis formula for rectangular weirs, where h = (Q1/3.367/Weir Wdhf/)/(Q2/3). Head Lossed I (Verical Gradient) Hrough carbon (ft/day) 600 600 factor of 4 during operation. I (Verical Gradient) through carbon (ft/ft) 0.0963 0.1348 0.2438 Based upon Darcy's Law Minimum required vertical gradient. <td></td> <td>1</td> <td>Carbon utilization</td> <td>(lb/wr)</td> <td>21.449</td> <td>30.029</td> <td>5/ 338</td> <td>Calculated by multiplying AUR and Q (units conversions applied). See</td>		1	Carbon utilization	(lb/wr)	21.449	30.029	5/ 338	Calculated by multiplying AUR and Q (units conversions applied). See
Flow Characteristics Lag Filter Basin Changeout Proquency (days) 128 91 50 applied). Applied). Porosity of GAC (umitless) 0.4 0.4 0.4 0.4 Assumed porosity of GAC. Effective grain size (umitless) 0.05 0.65 Effective grain size based on Calson F400 literature. Reynolds Number (unitless) 0.30 0.42 0.75 Reynolds Number overify validity of applying Darcy's Law for estimating head losses. Assumption valid for Ref #-1.1 Water height over weir, h ft 0.035 0.044 0.066 Calculated following the Francis Formals for rectangular weirs, where h = (Q(13.367 Weir Wdith))*(225) Water flow height, H + h ft 4.035 4.044 4.066 Height of the effluent stilling basin weir plus the height of the water overtopping the weir Low K GAC Low K GAC (Vertical Gradient) through carbon (ft/dt) 0.0963 0.1348 0.2438 Based upon Darcy's Law: Minimum required vertical gradient calculated by dividing K (ft/day) by V(ft/day), values provided in ft/f. Garobed HL (ft) 0.289 0.404 0.732 Total head loss acorbon bed daculated by multiplying the carbon bed diep		ł	Carbon utilization	(10/y1)	21,449	50,029	54,558	Attachment A Isotherm Data.
Head Losses K (ft) 0.4 0.4 0.4 0.4 Head Losses Assume the conductivity of GAC (unitless) 0.4 0.4 Assumed porosity of GAC Effective grain size (unitless) 0.45 0.65 0.65 Effective grain size based on Calgon F400 literature. Reynolds Number (unitless) 0.30 0.42 0.75 Reynolds Number to verify validity of applying Darcy's Law for estimating head for extinuing head		ł						
Head LossesLag Filter BasinK(unitless)0.40.40.40.4Assumed porosity of GAC. 0.65ConcentCalculated following based on Calgon F400 literature. Incriting the shared on Calgon F400 literature. Incriting the shared on Calgon F400 literature. (unitless)0.300.420.75Reynolds Number to verify validity of applying Darcy's Law for estimating head losses. Assumption valid for Re # < 1. (Calculated following the Francis formula for rectangular weirs, where h = (Calculated following the Francis formula for rectangular weirs, where h = (Calculated following the Francis formula for rectangular weirs, where h = (Calculated following the Francis formula for rectangular weirs, where h = (Calculated following the Francis formula for rectangular weirs, where h = (Calculated following the Francis formula for rectangular weirs, where h = (Calculated following the Francis formula for rectangular weirs, where h = (Calculated following the Francis formula for rectangular weirs, where h = (Calculated following the Francis formula for rectangular weirs, where h = (Calculate following the Francis formula for rectangular weirs, where h = (Calculate following the francis formula for rectangular weirs, where h = (Calculate following the francis formula for rectangular weirs, where h = (Calculate following the francis formula for rectangular weirs, where h = (Calculate following the Francis formula for rectangular weirs, where h = (Calculate following the francis formula for rectangular weirs, where h = (Calculate following the francis formula for rectangular weirs, where h = (Calculate following the francis formula for rectangular weirs, where h = (Calculate following the francis formula for rectangular weirs, where h = (Calculate following the francis formula for rectangular weirs, where h = (Calculate f	Flow Characteristics	Lag Filter Basin	Changeout Frequency	(days)	128	91	50	
Head LossesEffective grain size(mm)0.650.650.65Effective grain size based on Calgon F400 literature. Reynolds Number to verify validity of applying Darcy's Law for estimating head losses. Assumption valid for R # < 1. Calculated following the Francis formula for rectangular weirs, where h = (Q/3.367*Weir Width)/(Q/2) Water flow height, H + hft0.0350.0440.066Calculated following the Francis formula for rectangular weirs, where h = (Q/3.367*Weir Width)/(Q/2) Water flow height, H + hft4.0354.0444.066Height of the effluent stilling basin weir plus the height of the water overtopping the weirLow K GACLow K GACControl of Cardient Unrough carbon(ft/day)600600Assumes that the conductivity of the clean carbon bed could decrease by a factor of 4 during operation.i (Vertical Gradient) Unrough carbon(ft/ft)0.09630.13480.2438Based upon Darcy's Law: Minimum required vertical gradient calculated by dividing K (ft/day) by V (ft/day)' values provided in ft/ft.Garbon bed HL(ft)0.2890.4040.732Total head loss across carbon bed calculated by multiplying the carbon bed depth by the minimum vertical gradient.Height of water in grifter basin(ft)0.0080.0015nr/day is reported by Mulqueen (The flow of water through graves), 2005) reduced by a factor of 4.Genetation in the differ basinHeight of water in lag filter basinHeight of water in lag filter basinHeight of water in lag filt		1						
Head Losses Lag Filter Basin K (ft) 0.30 0.42 0.75 Reynolds Number to verify validity of applying Darcy's Law for estimating head losses. Assumption valid for Re = 1. Head Losses Water height over weir, h ft 0.035 0.044 0.066 Calculated following the Francis formula for rectangular weirs, where h = (0/3.367*Weir Wuthth)?(2/3) Water flow height, H + h ft 4.035 4.044 4.066 Height of the Water Wuthth)?(2/3) Height of the Water flow height, H + h ft 4.035 4.044 4.066 Height of the effect flow height of the water overtopping the weir Verter Flow Height of the water flow height of the water overtopping the weir If (Vertical Gradient) through carbon (ft/day) 600 600 factor of 4 during overtaion. I (Vertical Gradient) through carbon (ft/ft) 0.0963 0.1348 0.2438 Based upon Darcy's Law: Minimum required vertical gradient calculated by dividing K (ft/day) 'velow flow flow flow flow flow flow flow f		1						
Head LossesReginal Number(Initial SN) 0.30 0.42 0.73 head losses. Assumption valid for Re # c1.Initial Calculated for the formula for rectangular weirs, where h = (Q/(3.367-Weir Width))^{(2/3)}Water flow height, H + hft 0.035 0.044 0.066 Calculated following the Francis formula for rectangular weirs, where h = (Q/(3.367-Weir Width))^{(2/3)}Water flow height, H + hft 4.035 4.044 4.066 Height of the effluent stilling basin weir plus the height of the water overopting the weirLow K GACControl K (fr/(day)600600600Assumes that the conductivity of the clean carbon bed could decrease by a factor of 4 during operation.I (Vertical Gradient) through carbon(ft/fi) 0.0963 0.1348 0.2438 Based upon Darcy's Law: Minimum required vertical gradient calculated by dividing K (ft/day) by V (ft/day): values provided in ft/fi.Carbon bed HL(ft) 0.0963 0.1488 0.2438 Total bad loss across carbon bed calculated by multiplying the carbon bed depth by the minimum vertical gradient.Head LossesGravel bed HL(ft) 0.006 0.008 0.0151 Total bad loss across carbon bed calculated by a factor of 4.Head LossesGeotextile permittivity(sec ⁻¹) 0.44 0.44 0.44 Permittivity of "typical" 6 oz/sy nonvoven goetextile, reduced by a factor of 4.Head LossesHeight of water in lag filter basin(ft) 0.003 0.0065 0.0075 Head losses (due to nonwoven goetextile, reduced by a factor of 4.H		ł	Effective grain size	(mm)	0.65	0.65	0.65	
Head LossesAssumption valid for $Re \# < 1$. Water height over weir, hft0.0350.0440.066Calculated following the Francis formula for rectangular weirs, where h = $(Q(3,367)Weir Width))^2(23)$. Height of the effluent stilling basin weir plus the height of the water overtopping the weirUse of the figure of the figur		ł	Reynolds Number	(unitless)	0.30	0.42	0.75	
Head LossesWater neght over weir, nnt0.0350.0440.006 $(Q/(3.367)Weir With))/(2/3)$ Water flow height, H + hft4.0354.0444.066Height of the effluent stilling basin weir plus the height of the water overopping the weirVerter flow height, H + hft4.0354.0444.066Height of the effluent stilling basin weir plus the height of the water overopping the weirVerter flow height, H + hft4.0354.0444.066Height of the effluent stilling basin weir plus the height of the water overopping the weirVerter flow K GACLow K CACLow K GACCarbon bed HL(ft)0.09630.13480.2438Based upon Darcy's Law: Minimum required vertical gradient calculated by dividing K (ft/day) by V (ft/day); values provided in ft/ft. Carbon bed HLGravel bed HL(ft)0.0060.0080.015The average estimate of hydraulic conductivity of ASTM #5 store (12,000 m/day) as reported by Mulqueen (The flow of water through gravels, 2005) reduced by a factor of 4 during operation.Head LossesGeotextile permittivity(sec ⁻¹)0.40.40.4Permittivity of "typical" 6 oz/sy nonwoven geotextile (one above carbon + one above gravel).Head Losses through piping network(ft)0.0030.0060.018Ber Table 3.2 series for estimated head losses through piping network from the laget flater basin to the effluent stilling basinHead LosseHeight of water in lag filter ba		ł	,	()	0.00		00	
Head LossesLag Filter BasinK(ft)0.010.0030.0050.007Head losses through piping network(ft)0.0030.0050.007Head losses through piping network from the lag filter basin(ft)0.0030.0050.007Height of water in lead filter basin(ft)0.0030.0050.007Height of water in lead filter basin(ft)0.0030.0050.007Height of water in lead filter basin(ft)0.0030.0060.001Mater basinMater basinMate			Water height over weir h	Ĥ	0.035	0.044	0.066	
Head Losses Filter Basin K (ft) 0.003 0.005 0.0097 Head loss across carbon bed calculated by multiplying the carbon bed (1,000) Head Losses Lag Filter Basin Geotextile HL total (ft) 0.003 0.006 0.007 Total head loss across carbon bed calculated by multiplying the carbon bed (1,000) Head Losses Height of water in lag filter basin (ft) 0.003 0.0134 0.444 4.000 Overtopping the weir Carbon bed calculated by multiplying the carbon bed (1,000) Head Losses Filter Basin (ft) 0.006 0.008 0.015 Total head loss across carbon bed calculated by multiplying the carbon bed (1,000) Head Losses Gravel bed HL (ft) 0.006 0.008 0.015 Total head loss across carbon bed calculated by multiplying the carbon bed (1,000) Geotextile permittivity (scc ⁻¹) 0.4 0.4 0.4 Permittivity of "typical" 6 oz/sy nonwoven geotextile (one above carbon + one above gravel). Design Objective Height of water in lag filter basin (ft) 4.044 4.47 4.84 Sum of water head basin (see Table 3.1 series) under low K GAC corbin in Lag filter basin.								(Q/(3.367*Weir Width))^(2/3)
Lag Filter Basin K (ft/day) 600 600 600 Assumes that the conductivity of the clean carbon bed could decrease by a factor of 4 during operation. Head Losses K (ft/day) 600 600 600 Assumes that the conductivity of the clean carbon bed could decrease by a factor of 4 during operation. Head Losses i (Vertical Gradient) through carbon (ft/ft) 0.0963 0.1348 0.2438 Based upon Darcy's Law: Minimum required vertical gradient calculated by diving K (ft/day) by V (ft/day); values provided in ft/ft. Garbon bed HL (ft) 0.289 0.404 0.732 Total head loss across carbon bed calculated by multiplying the carbon bed declulated by multiplying the carbon bed factor of 4 during operation. Gravel bed HL (ft) 0.289 0.404 0.732 Total head loss across carbon bed calculated by multiplying the carbon bed declulated by multiplying the carbon bed factor of 4 during operation. Gravel bed HL (ft) 0.006 0.008 0.015 The average estimated brydivall's conductivity of ASTM #5 stone (12,000 m/day) as reported by Mulqueen (The flow of water through prive (sec ⁻¹) 0.4 0.4 0.4 0.4 0.4 Head losses through piping network (ft)			Water flow height, H + h	ft	4.035	4.044	4.066	
Head Losses K (ft/day) 600 600 Assumes that the conductivity of the clean carbon bed could decrease by a factor of 4 during operation. Head Losses i (Vertical Gradient) through carbon (ft/ft) 0.0963 0.1348 0.2438 Assumes that the conductivity of the clean carbon bed could decrease by a factor of 4 during operation. Carbon bed HL (ft) 0.299 0.404 0.732 Total head loss across carbon bed calculated by multiplying the carbon bed dividing K (ft/dav) by V (ft/dav); values provided in ft/ft. Garvel bed HL (ft) 0.289 0.404 0.732 Total head loss across carbon bed calculated by multiplying the carbon bed dividing K (ft/dav) by V (ft/dav); values provided in ft/ft. Garvel bed HL (ft) 0.006 0.008 0.015 The average estimate of hydraulic conductivity of ASTM #5 stone (12,000 m/day) as reported by Mulqueen (The flow of water through gravels, 2005) reduced by a factor of 4 during operation. Geotextile permittivity (sec ⁻¹) 0.4 0.4 Permittivity of "typical" 6 oz/sy nonwoven geotextile, reduced by a factor of 4. Head losses through piping network (ft) 0.003 0.006 0.018 See Table 3.2 series for estimated head losses through piping network from the lag filter basin to the effluent stilling basin		L						overtopping the weir
Head Losses K (ft/day) 600 600 Assumes that the conductivity of the clean carbon bed could decrease by a factor of 4 during operation. Head Losses i (Vertical Gradient) through carbon (ft/ft) 0.0963 0.1348 0.2438 Assumes that the conductivity of the clean carbon bed could decrease by a factor of 4 during operation. Carbon bed HL (ft) 0.299 0.404 0.732 Total head loss across carbon bed calculated by multiplying the carbon bed dividing K (ft/dav) by V (ft/dav); values provided in ft/ft. Garvel bed HL (ft) 0.289 0.404 0.732 Total head loss across carbon bed calculated by multiplying the carbon bed dividing K (ft/dav) by V (ft/dav); values provided in ft/ft. Garvel bed HL (ft) 0.006 0.008 0.015 The average estimate of hydraulic conductivity of ASTM #5 stone (12,000 m/day) as reported by Mulqueen (The flow of water through gravels, 2005) reduced by a factor of 4 during operation. Geotextile permittivity (sec ⁻¹) 0.4 0.4 Permittivity of "typical" 6 oz/sy nonwoven geotextile, reduced by a factor of 4. Head losses through piping network (ft) 0.003 0.006 0.018 See Table 3.2 series for estimated head losses through piping network from the lag filter basin to the effluent stilling basin								
Head Losses K (It/day) 600 600 600 600 factor of 4 during operation. Total head loss across carbon bed calculated by dividing K (fifval) by V (fifday) by V (fifday) by U (fiday) b					Low K GAC			
Head Losses Lag Filter Basin Carbon bed HL (ft) 0.006 0.01348 0.2438 factor of 4 during operation. Based upon Darry's Law (fn/daw) by V (fn/daw); values provided in ft/ft. Head Losses Carbon bed HL (ft) 0.289 0.404 0.732 Total head loss across carbon bed calculated by multiplying the carbon bed depth by the minimum vertical gradient. Gravel bed HL (ft) 0.006 0.008 0.015 Total head loss across carbon bed calculated by multiplying the carbon bed depth by the minimum vertical gradient. Gravel bed HL (ft) 0.006 0.008 0.015 Total head loss across carbon bed calculated by multiplying the carbon bed depth by the minimum vertical gradient. Geotextile permittivity (sec ⁻¹) 0.4 0.4 0.4 Permittivity of "typical" 6 oz/sy nonwoven geotextile, reduced by a factor of 4. Head losses through piping network (ft) 0.003 0.006 0.018 See Table 3.2 series for estimated head losses through piping network from the lag filter basin Height of water in lag filter basin (ft) 4.34 4.47 4.84 Sum of water in lead basin (see Table 3.1 series) under low K GAC conditions. Design Objective Height of water in lag filter basin (ft) 4.64 4.89		ł	к	(ft/day)	600	600	600	
Head Losses Interface of the section of the sectin of the section of the sectin of the section		ł		(it duy)	000	000	000	
Head Losses Lag Filter Basin Lag Filter basin Carbon bed HL (ft) 0.289 0.404 0.732 dividing K (h/dav) by (h/dav); values provided by multiplying the carbon bed depth by the minimum vertical gradient. Head Losses Garven bed HL (ft) 0.289 0.404 0.732 Total head loss across carbon bed calculated by multiplying the carbon bed depth by the minimum vertical gradient. Graven bed HL (ft) 0.006 0.008 0.015 The average estimate of hydraulic conductivity of ASTM #5 stone (12,000 m/day) as reported by Mulqueen (The flow of water through gravels, 2005) reduced by a factor of 4 during operation. Geotextile permittivity (sec ⁻¹) 0.4 0.4 0.4 Permittivity of "typical" 6 oz/sy nonwoven geotextile, reduced by a factor of 4. Head losses through piping network (ft) 0.003 0.006 0.018 Head losses due to nonwoven geotextile (one above carbon + one above gravel). Height of water in lag filter basin (ft) 0.003 0.006 0.018 See Table 3.2 series for estimated head losses through piping network from the lag filter basin to the effluent stilling basin Design Objective Height of water in lag filter basin (ft) 4.34 4.47 4.84 Sum of water height filter basin. Scet Table 3.1 series) under low K GAC conditions.<		1	i (Vertical Gradient) through carbon	(ft/ft)	0.0963	0.1348	0.2438	
Head Losses Lag Filter Basin Carbon bed HL (ft) 0.289 0.404 0.732 depth by the minimum vertical gradient. Head Losses Gravel bed HL (ft) 0.006 0.008 0.015 The average estimate of hydraulic conductivity of ASTM #5 stone (12,000 moderates) for educed by a factor of 4 during operation. Geotextile permittivity (sec ⁻¹) 0.4 0.4 0.4 Permittivity of "typical" 6 oz/sy nonwoven geotextile, reduced by a factor of 4. Geotextile HL total (ft) 0.003 0.006 0.018 Read losses due to nonwoven geotextile (one above carbon + one above gravel). Head losses through piping network (ft) 0.003 0.006 0.018 See Table 3.2 series for estimated head losses through piping network from the lag filter basin Height of water in lag filter basin (ft) 4.34 4.47 4.84 Sum of water height for water in lead filter basin Inter series 1.1 series) under low K GAC conditions. Design Objective Height of water in lag filter basin (ft) 4.64 4.89 5.61 Height of water in lag filter basin.		ł	. ((111)	0.02.02	0.000.00	0.2.000	
Head LossesLag Filter BasinGravel bed HL(ft) 0.006 0.008 0.015 The average estimate of hydraulic conductivity of ASTM #5 stone (12,000 m/day) as reported by Mulqueen (The flow of water through gravels, 2005) reduced by a factor of 4 during operation.Head LossesGeotextile permittivity(sec ⁻¹) 0.4 0.4 0.4 0.4 Permittivity of "typical" 6 oz/sy nonwoven geotextile, reduced by a factor of 4.Geotextile HL total(ft) 0.003 0.0053 0.0097 Head losses due to nonwoven geotextile (one above carbon + one above gravel).Head losses through piping network(ft) 0.003 0.006 0.018 See Table 3.2 series for estimated head losses through piping network from the lag filter basinHeight of water in lag filter basin(ft) 4.34 4.47 4.84 Sum of water height or effluent stilling basinDesign ObjectiveHeight of water in lag filter basin(ft) 4.64 4.89 5.61 Height of water in lag filter basin.Minimum height of water in lag filter basin(ft) 4 4 To maintain saturated carbon in lag filter basin.		ł	Carbon bed HL	(ft)	0.289	0.404	0.732	
Head Losses Gravel bed HL (ft) 0.006 0.008 0.015 m/day) as reported by Mulqueen (The flow of water through gravels, 2005) reduced by a factor of 4 during operation. Head Losses Geotextile permittivity (sec ⁻¹) 0.4 0.4 0.4 Permittivity of "typical" 6 oz/sy nonwoven geotextile, reduced by a factor of 4. Geotextile HL total (ft) 0.0038 0.0053 0.0097 Head losses due to nonwoven geotextile (one above carbon + one above gravel), reduced by a factor of 4. Head losses through piping network (ft) 0.0038 0.0053 0.0097 Head losses due to nonwoven geotextile (one above carbon + one above gravel), reduced by a factor of 4. Height of water in lag filter basin (ft) 0.003 0.006 0.018 See Table 3.2 series for estimated head losses through piping network from the lag filter basin to the effluent stilling basin weir plus anticipated head losses through lag filter basin to the effluent stilling basin Design Objective Height of water in lag filter basin (ft) 4.64 4.89 5.61 Height of water in lad basin (see Table 3.1 series) under low K GAC conditions. Minimum height of water in lag filter basin (ft) 4 4 To maintain saturated carbon in lag filter basin.		ł		()				depth by the minimum vertical gradient.
Head Losses Lag Filter Basin Construction		ł						
Head Losses Geotextile permittivity (sec ⁻¹) 0.4 0.4 0.4 Permittivity of "typical" 6 oz/sy nonwoven geotextile, reduced by a factor of 4. Head Losses Geotextile HL total (ft) 0.0038 0.0053 0.0097 Head losses due to nonwoven geotextile (one above carbon + one above gravel). Head losses through piping network (ft) 0.003 0.006 0.018 See Table 3.2 series for estimated head losses through piping network from the lag filter basin to the effluent stilling basin Height of water in lag filter basin (ft) 4.34 4.47 4.84 Sum of water in lead filter basin Iter basin to the effluent stilling basin Design Objective Height of water in lag filter basin (ft) 4.64 4.89 5.61 Height of water in lead basin (see Table 3.1 series) under low K GAC conditions.			Gravel bed HL	(ft)	0.006	0.008	0.015	
Head Losses Image: Control of the		Lag Filter Basin						reduced by a factor of 4 during operation.
Design Objective Height of water in lead filter basin (ft) 0.003 0.006 0.008 See Table 3.2 series for estimated head losses through piping network from the lag filter basin to the effluent stilling basin Design Objective Height of water in lag filter basin (ft) 4.64 4.89 5.61 Height of water in lag filter basin.	Head Losses		Geotextile permittivity	(sec ⁻¹)	0.4	0.4	0.4	
Head losses through piping network (ft) 0.003 0.006 0.018 lag filter basin to the effluent stilling basin (ft) Height of water in lag filter basin (ft) 4.34 4.47 4.84 Sum of water height over effluent stilling basin weir plus anticipated head losses through lag filter basin Design Objective Height of water in lag filter basin (ft) 4.64 4.89 5.61 Minimum height of water in lag filter basin (ft) 4 4 4 To maintain saturated carbon in lag filter basin.			Geotextile HL total	(ft)	0.0038	0.0053	0.0097	gravel).
Height of water in lag filter basin (ft) 4.34 4.47 4.84 Sum of water height over effluent stilling basin weir plus anticipated head losses through lag filter basin to the effluent stilling basin Design Objective Height of water in lead filter basin (ft) 4.64 4.89 5.61 Height of water in lead basin (see Table 3.1 series) under low K GAC conditions.			Head losses through piping network	(ft)	0.003	0.006	0.018	See Table 3.2 series for estimated head losses through piping network from the lag filter basin to the effluent stilling basin
Besign Objective Height of water in lead filter basin (ft) 4.64 4.89 5.61 Height of water in lead basin (see Table 3.1 series) under low K GAC conditions. Design Objective Minimum height of water in lag filter basin (ft) 4 4 To maintain saturated carbon in lag filter basin.			Height of water in lag filter basin	(ft)	4.34	4.47	4.84	Sum of water height over effluent stilling basin weir plus anticipated head
Design Objective Minimum height of water in lag filter basin (ft) 4 4 4 To maintain saturated carbon in lag filter basin.		D. C. Oltri	Height of water in lead filter basin	(ft)	4.64	4.89	5.61	Height of water in lead basin (see Table 3.1 series) under low K GAC
		Design Objective	Minimum height of water in lag filter basin	(ft)	4	4	4	
		ł	Satisfy design constraints?		Pass	Pass	Pass	Height of water must exceed minimum allowable height.

Table 5.0 SeriesCalculated System Head Losses Through the Discharge BasinChemours, Fayetteville Works, North Carolina

Sheet <u>Title</u>

- 5.1.C SEEP-C-1: Calculated System Head Losses Through the Discharge Basin
- 5.2.C SEEP-C-1: Calculated System Head Losses Through Through Piping in the Discharge Basin

	Flow-Through Cell Design Basis										
		Variable		25% Flow	50% Flow	95% Flow	Comments				
El D		Volumetric Flow Rate, Q	(gpm)	30	42	76	Range of flows based upon dry weather seep flow data (Table 1)				
Flow Dyr	namics	Volumetric Flow Rate, Q	(ft ³ /day)	5,775	8,085	14,630	Units conversion				
Gene	eral	Height of cell in basin	(ft)	7.5	7.5	7.5					
Effluent Stilling Basin	Effluent Stilling	Minimum height of weir crest in ESB	(ft)	4	4	4					
Design	Basin	Width of weir crest in ESB	(ft)	3	3	3					
	Discharge Basin	Width of discharge basin	(ft)	4	4	4	Design Parameters				
Discharge Basin	Sizing	Length of discharge basin	(ft)	2.5	2.5	2.5	Design Farameters				
	Discharge Basin Pipe	Diameter of DB piping	(in)	7.565	7.565	7.565					
Design		Length of DB piping	(ft)	24	24	24]				
	Sizing	Invert of DP piping	(ft)	0	0	0					

		Flov	w through Discha	rge Basin Pip	e: High K GA	C	
Flow Characteristics	Effluent Basin	Water height over weir, h	ft	0.035	0.044	0.066	Calculated following the Francis formula for rectangular weirs, where $h = (O/(3.367*Weir Width))^{(2/3)}$
		Head losses through piping network	(ft)	0.002	0.004	0.011	See Table 5.2 series for estimated head losses through piping network from the discharge basin to the river
11	Discharge Basin	Height of water in effluent stilling basin	(ft)	4.035	4.044		Height of the effluent stilling basin weir plus the height of the water overtopping the weir
Head Losses	Design Objective	Available head for transfer through discharge piping	(ft)	4.03	4.04	4.05	Height of water in effluent stilling basin minus anticipated head losses through discharge piping network. Available head should be greater than 0 ft.
		Satisfy design constraints?		Pass	Pass	Pass	

		Flov	w through Discha	rge Basin Pip	e: Low K GA	С	
Flow Characteristics	Effluent Basin	Water height over weir, h	ft	0.035	0.044	0.066	Calculated following the Francis formula for rectangular weirs, where h =
		, , , , , , , , , , , , , , , , , , ,					$(Q/(3.367*Weir Width))^{(2/3)}$
		Head losses through piping network	(ft)	0.002	0.004	0.011	See Table 5.2 series for estimated head losses through piping network from
	Discharge Basin		()				the discharge basin to the river
	0	Height of water in effluent stilling basin	(ft)	4.035	4.044	4.066	Height of the effluent stilling basin weir plus the height of the water
Head Losses		fieight of water in efficient stiffing basin	(11)	4.055	4.044	4.000	overtopping the weir
ficad Losses	Design Objective	Available head for transfer through discharge piping	(ft)	4.03	4.04	4.05	Height of water in effluent stilling basin minus anticipated head losses through discharge piping network. Available head should be greater than 0 ft.
		Satisfy design constraints?	(ft)	Pass	Pass	Pass	

Table 5.2.C Calculated System Head Losses Through Piping in the Discharge Basin SEEP-C-1 Chemours, Fayetteville Works, North Carolina

			Flow-Through (Cell Design Basis			
		Variable		25% Flow	50% Flow	95% Flow	Comments
Flow D		Volumetric Flow Rate, Q	(gpm)	30	42	76	Range of flows based upon dry weather seep flow data (Table 1)
Flow D	ynamics	Volumetric Flow Rate, Q	(ft ³ /day)	5,775	8,085	14,630	Units conversion
	Discharge Basin	Diameter of DB piping	(in)	7.565	7.565	7.565	
Discharge Basin	Piping	Length of DB piping	(ft)	24	24	24	Design Parameters
(DB) Design	Fiping	Invert of DP piping	(ft)	0	0	0	
(DB) Design	Pipe Loss	Head loss coefficient for entrance pipe losses	(unitless)	0.5	0.5	0.5	Typical energy loss coefficients for fluid flow through pipes (Hydraulic Losses
	Coefficients	Head loss coefficient for exit pipe losses	(unitless)	1	1	1	in Pipes, Kudela)
		Pipe cross sectional area	(ft2)	0.312	0.312	0.312	Cross sectional area of discharge pipe leading river basin
		Pipe velocity	(ft/s)	0.21	0.30	0.54	Volumetric flow rate dived by pipe cross sectional area
		Kinematic Viscosity	(ft2/s)	1.20E-05	1.20E-05	1.20E-05	Viscosity of water at standard temperature and pressure
Discharge Basin	Discharge Basin	Reynolds Number	(unitless)	11,200	15,700	28,500	Ratio of inertial forces to viscous forces in fluid flow
0		Flow Roughness Coefficient	(ft)	8.E-06	8.E-06	8.E-06	Coefficient of fluid resistance to flow along pipe walls
(DB) Design	Piping	Flow Friction Factor, f	(unitless)	0.030	0.027	0.024	Empirical factor for calculating head losses following Darcy-Weisbach head
		Dynamic Energy Loss- Darcy EQ	(ft)	0.001	0.001		loss equation Friction from fluid flow along walls in pipe
		Entrance Losses	(ft)	0.001	0.002	0.007	Head losses due to fluid entering and exiting the discharge basin pipe
		Dynamic + Minor Losses	(ft)	0.002	0.004	0.011	Summation of pipe losses in discharge basin pipe

Isotherm Studies Performed by Others

	IS-01 (1	Perched Zone)		
Commound	Concentration	Kf	1/n	% of Total PFAS
Compound	(µg/L)	(mg/g)	(unitless)	% of Total PFAS (percentage) 1.4% 61.2% 19.6% 5.5% 1.6% 3.3% 7.2% 0.1% 0.2%
PEPA	17	2.0962	0.5263	1.4%
PFMOAA	750	3.8074	0.7289	61.2%
PFO2HxA	240	31.833	0.6802	19.6%
PFO3OA	67			5.5%
PFO4DA	19			1.6%
PMPA	40	4.4852	0.8421	3.3%
HFPO-DA	88	38.685	0.6245	7.2%
PFBA	1.5	0.5476	0.6594	0.1%
PFPeA	2.8	1.6392	0.5375	0.2%
Total	1225.3			

	IS-04 through	IS-07 (Upper C	DOF2)			
Compound	Concentration	Kf	1/n	% of Total PFAS		
Compound	(µg/L)	(mg/g)	(unitless)	(percentage)		
PEPA	1.9	0.49	0.396	1.6%		
LIA	1.9	1.1563	0.4853	1.070		
PFMOAA	85	4.0573	0.6786	60.5%		
TWOAA	05	4.6276	0.7461	09.5%		
PFO2HxA	17	6.1244	0.4413	13.0%		
11021174	1/	14.438	0.5561			
PFO3OA	5.1			4.2%		
PFO4DA	1.6			1.3%		
PMPA	5.4	1.3626	0.6565	4.40/		
FMFA	5.4	1.1897	0.6386	4.470		
HFPO-DA	6	3.7049	0.3885	4.00/		
nffu-da	0	10.292	0.4878	4.9%		
PFBA	0.072			0.06%		
PFPeA	0.15			0.12%		
Total	122.2					

				Seep A				· · · · · · · · · · · · · · · · · · ·
Constituent of Concern (COC)	Concentration (µg/L)	%	IS-01 (Perched Zone)	IS-04 through IS-07 (Upper OOF2))F2)
	Concentration (µg/L)	-70	x/m (mg/g)	AUR (g/L)	x/m (mg/g)	AUR (g/L)	x/m	AUR
PEPA	6.9	3.1%	0.153	0.045	0.068	0.101	0.103	0.067
PFMOAA	97.5	43.3%	0.698	0.140	0.836	0.117	0.815	0.120
PFO2HxA	50	22.2%	4.149	0.012	1.633	0.031	2.729	0.018
PFO3OA	18	8.0%						
PFO4DA	9.7	4.3%						
PMPA	23	10.2%	0.187	0.123	0.115	0.201	0.107	0.215
HFPO-DA	20	8.9%	3.362	0.006	0.810	0.025	1.527	0.013
PFBA								
PFPeA								
	225.1	100.0%						

Notes:

1. @ 97.5 µg/L, the AUR for PFMOAA is likely within the 0.117 to 0.140 range, given that the isotherms for these two estimates were based on concentrations of 85 and 750 µg/L, respectively. The value is likely closer to the 0.117 value given that 97.5 µg/L is closer to the 85 µg/L isotherm conditions; assume 0.125 g/L.

2. @ 23 µg/L, the AUR for PMPA is likely within the 0.123 to 0.215 range given that the isotherms for these two estimates were based on concentrations of 40 and 5.4 µg/L, respectively; assume 0.169 g/L (mid-range).

3. IS-01 (Perched Zone) corresponds to isotherm pilot study performed by others.

4. IS-04 through IS-07 (Upper OOF2) corresponds to a dual-test isotherm pilot study performed by others.

Isotherm Studies Performed by Others

	IS-01 (1	Perched Zone)		
Compound	Concentration	Kf	1/n	% of Total PFAS
Compound	(µg/L)	(mg/g)	(unitless)	% of Total PFAS (percentage) 1.4% 61.2% 19.6% 5.5% 1.6% 3.3% 7.2% 0.1% 0.2%
PEPA	17	2.0962	0.5263	1.4%
PFMOAA	750	3.8074	0.7289	61.2%
PFO2HxA	240	31.833	0.6802	19.6%
PFO3OA	67			5.5%
PFO4DA	19			1.6%
PMPA	40	4.4852	0.8421	3.3%
HFPO-DA	88	38.685	0.6245	7.2%
PFBA	1.5	0.5476	0.6594	0.1%
PFPeA	2.8	1.6392	0.5375	0.2%
Total	1225.3			

	IS-04 through	IS-07 (Upper C	DOF2)			
Compound	Concentration	Kf	1/n	% of Total PFAS		
Compound	(µg/L)	(mg/g)	(unitless)	(percentage)		
PEPA	1.9	0.49	0.396	1.6%		
LIA	1.9	1.1563	0.4853	1.070		
PFMOAA	85	4.0573	0.6786	60.5%		
TWOAA	05	4.6276	0.7461	09.5%		
PFO2HxA	17	6.1244	0.4413	13.0%		
11021174	1/	14.438	0.5561			
PFO3OA	5.1			4.2%		
PFO4DA	1.6			1.3%		
PMPA	5.4	1.3626	0.6565	4.40/		
FMFA	5.4	1.1897	0.6386	4.470		
HFPO-DA	6	3.7049	0.3885	4.00/		
nffu-da	0	10.292	0.4878	4.9%		
PFBA	0.072			0.06%		
PFPeA	0.15			0.12%		
Total	122.2					

	Seep B									
Constituent of Concern (COC)	Concentration (µg/L)	%	IS-01 (IS-01 (Perched Zone)		IS-04 through IS-07 (Upper OOF2)				
	Concentration (µg/L)	70	x/m (mg/g)	AUR (g/L)	x/m (mg/g)	AUR (g/L)	x/m	AUR		
PEPA	12	3.9%	0.204	0.059	0.085	0.141	0.135	0.089		
PFMOAA	180	58.0%	1.091	0.165	1.267	0.142	1.287	0.140		
PFO2HxA	48	15.5%	4.035	0.012	1.604	0.030	2.668	0.018		
PFO3OA	10	3.2%								
PFO4DA	1.5	0.5%								
PMPA	36	11.6%	0.273	0.132	0.154	0.234	0.142	0.253		
HFPO-DA	23	7.4%	3.668	0.006	0.856	0.027	1.634	0.014		
PFBA										
PFPeA										
	310.5	100.0%								

Notes:

1. @ 180 µg/L, the AUR for PFMOAA is likely in the middle of the 0.14 to 0.165 range, given that the isotherms for these two estimates were based on concentrations of 85 and 750 µg/L, respectively; assume 0.156 g/L.

2. @ 36 µg/L, the AUR for PMPA is likely closer to the 0.132 value than the 0.253 given that the isotherms for these two estimates were based on concentrations of 40 and 5.4 µg/L, respectively; assume 0.14 g/L.

3. IS-01 (Perched Zone) corresponds to isotherm pilot study performed by others.

4. IS-04 through IS-07 (Upper OOF2) corresponds to a dual-test isotherm pilot study performed by others.

Isotherm Studies Performed by Others

	IS-01 (1	Perched Zone)		
Compound	Concentration	Kf	1/n	% of Total PFAS
Compound	(µg/L)	(mg/g)	(unitless)	% of Total PFAS (percentage) 1.4% 61.2% 19.6% 5.5% 1.6% 3.3% 7.2% 0.1% 0.2%
PEPA	17	2.0962	0.5263	1.4%
PFMOAA	750	3.8074	0.7289	61.2%
PFO2HxA	240	31.833	0.6802	19.6%
PFO3OA	67			5.5%
PFO4DA	19			1.6%
PMPA	40	4.4852	0.8421	3.3%
HFPO-DA	88	38.685	0.6245	7.2%
PFBA	1.5	0.5476	0.6594	0.1%
PFPeA	2.8	1.6392	0.5375	0.2%
Total	1225.3			

	IS-04 through	1S-07 (Upper (DOF2)			
Compound	Concentration	Kf	1/n	% of Total PFAS		
Compound	(µg/L)	(mg/g)	(unitless)	(percentage)		
PEPA	1.9	0.49	0.396	1.6%		
LIA	1.9	1.1563	0.4853	1.070		
PFMOAA	85	4.0573	0.6786	60.5%		
TMOAA	05	4.6276	0.7461	09.5%		
PFO2HxA	17	6.1244	0.4413	12.00/		
FF02fixA	17	14.438	0.5561	% of Total PFAS (percentage) 1.6% 69.5% 13.9% 4.2% 1.3% 4.4% 0.06% 0.12%		
PFO3OA	5.1			4.2%		
PFO4DA	1.6			1.3%		
PMPA	5.4	1.3626	0.6565	4.40/		
FMFA	5.4	1.1897	0.6386	4.470		
HFPO-DA	6	3.7049	0.3885	4.09/		
nffu-da	0	10.292	0.4878	4.9%		
PFBA	0.072			0.06%		
PFPeA	0.15			0.12%		
Total	122.2			•		

				Seep C				
Constituent of Concern (COC)	Concentration (µg/L)	%	IS-01 (Perched Zone)		IS-04 through IS-07 (Upper OOF2)			F2)
	Concentration (µg/L)	70	x/m (mg/g)	AUR (g/L)	x/m (mg/g)	AUR (g/L)	x/m	AUR
PEPA	3.5	1.1%	0.107	0.033	0.052	0.067	0.074	0.047
PFMOAA	200	61.1%	1.178	0.170	1.361	0.147	1.393	0.144
PFO2HxA	60	18.3%	4.697	0.013	1.770	0.034	3.020	0.020
PFO3OA	19	5.8%						
PFO4DA	4.1	1.3%						
PMPA	14	4.3%	0.123	0.114	0.083	0.169	0.078	0.180
HFPO-DA	27	8.2%	4.054	0.007	0.911	0.030	1.767	0.015
PFBA								
PFPeA								
	327.6	100.0%						

Notes:

1. @ 200 µg/L, the AUR for PFMOAA is likely in the middle of the 0.144 to 0.170 range, given that the isotherms for these two estimates were based on concentrations of 85 and 750 µg/L, respectively; assume 0.157 g/L.

2. @ 14 µg/L, the AUR for PMPA is likely in the middle of the 0.114 to 0.180 range, but closer to 0.180 given that the isotherms for these two estimates were based on concentrations of 40 and 5.4 µg/L, respectively; assume 0.163 g/L.

3. IS-01 (Perched Zone) corresponds to isotherm pilot study performed by others.

4. IS-04 through IS-07 (Upper OOF2) corresponds to a dual-test isotherm pilot study performed by others.

Isotherm Studies Performed by Others

IS-01 (Perched Zone)						
Compound	Concentration	Kf	1/n	% of Total PFAS		
Compound	(µg/L)	(mg/g)	(unitless)	(percentage)		
PEPA	17	2.0962	0.5263	1.4%		
PFMOAA	750	3.8074	0.7289	61.2%		
PFO2HxA	240	31.833	0.6802	19.6%		
PFO3OA	67			5.5%		
PFO4DA	19			1.6%		
PMPA	40	4.4852	0.8421	3.3%		
HFPO-DA	88	38.685	0.6245	7.2%		
PFBA	1.5	0.5476	0.6594	0.1%		
PFPeA	2.8	1.6392	0.5375	0.2%		
Total	1225.3					

IS-04 through IS-07 (Upper OOF2)						
Compound	Concentration	Kf	1/n	% of Total PFAS		
Compound	(µg/L)	(mg/g)	(unitless)	(percentage)		
PEPA	1.9	0.49	0.396	1.6%		
LIA	1.9	1.1563	0.4853	1.070		
PFMOAA	85	4.0573	0.6786	69.5%		
TWOAA	05	4.6276	0.7461	09.3%		
PFO2HxA	17	6.1244	0.4413	13.9%		
11021174	17	14.438	0.5561	13.9%		
PFO3OA	5.1			4.2%		
PFO4DA	1.6			1.3%		
PMPA	5.4	1.3626	0.6565	4.4%		
FMFA	5.4	1.1897	0.6386	4.470		
HFPO-DA	6	3.7049	0.3885	4.9%		
nffu-da	0	10.292	0.4878	4.9%		
PFBA	0.072			0.06%		
PFPeA	0.15			0.12%		
Total	122.2					

	Seep D									
Constituent of Concern (COC)	Concentration (µg/L)	%	IS-01 (Perched Zone)		IS-04 through IS-07 (Upper OOF2)			F 2)		
	Concentration (µg/L)	70	x/m (mg/g)	AUR (g/L)	x/m (mg/g)	AUR (g/L)	x/m	AUR		
PEPA	2.3	1.4%	0.086	0.027	0.044	0.052	0.061	0.038		
PFMOAA	100	58.9%	0.711	0.141	0.850	0.118	0.830	0.120		
PFO2HxA	33	19.4%	3.127	0.011	1.359	0.024	2.166	0.015		
PFO3OA	8.5	5.0%								
PFO4DA	2.4	1.4%								
PMPA	8.7	5.1%	0.083	0.105	0.060	0.144	0.057	0.151		
HFPO-DA	15	8.8%	2.809	0.005	0.725	0.021	1.327	0.011		
PFBA										
PFPeA										
	169.9	100.0%								

Notes:

1. @ 100 µg/L, the AUR for PFMOAA is likely within the 0.118 to 0.141 range, given that the isotherms for these two estimates were based on concentrations of 85 and 750 µg/L, respectively. The value is likely closer to the 0.118 value given that 100 µg/L is close to the 85 µg/L isotherm conditions; assume 0.125 g/L.

2. @ 8.7 µg/L, the AUR for PMPA is likely in the middle of the 0.105 to 0.151 range, but closer to 0.151 given that the isotherms for these two estimates were based on concentrations of 40 and 5.4 µg/L, respectively; assume 0.15 g/L.

3. IS-01 (Perched Zone) corresponds to isotherm pilot study performed by others.

4. IS-04 through IS-07 (Upper OOF2) corresponds to a dual-test isotherm pilot study performed by others.

APPENDIX C-2 Structural Calculations

APPENDIX C STRUCTURAL CALCULATIONS UPLIFT - SEEP C Chemours Fayetteville Works, North Carolina

STEP 1: CALCULATE UPLIFT FORCE water weight (pcf)

water weight (pcf)	62.4					
Chamber	length (ft)	width (ft)	height (ft)	vol (ft ³)	bouyant force (lbs)	
1	4.67	3.99	7.50	140	8,720	
2	10	10	7.50	750	46,800	
3	10	3.99	7.50	299	18,673	
4	10	10	7.50	750	46,800	
5	12.67	3.99	7.50	379	23,659	
6	3.5	3.99	7.50	105	6,536	
7	2.48	3.99	7.50	74	4,631	
concrete				998	62,269	
					218,088	total uplift (lbs.)

STEP 2: CALCULATE DOWNWARD FORCE

	150					
conc weight (pcf)	150					
Concrete Section	length (ft)	width (ft)	height (ft)	vol (ft ³)	weight (lbs)	
wall 1	26.67	0.67	7.50	133.35	20,003	
wall 2	26.67	0.67	7.50	133.35	20,003	
wall 3	26.67	0.67	7.50	133.35	20,003	
wall 4	10.00	0.67	7.50	50.25	7,538	
wall 5	10.00	0.67	7.50	50.25	7,538	
wall 6	10.00	0.67	7.50	50.25	7,538	
wall 7	10.00	0.67	7.50	50.25	7,538	
wall 8	3.99	0.67	7.50	20.05	3,007	
wall 9	3.99	0.67	7.50	20.05	3,007	
wall 10	3.99	0.67	4.00	10.69	1,604	
wall 11	3.99	0.67	7.50	20.05	3,007	
wall 12	3.99	0.67	7.50	20.05	3,007	
wall 13	3.99	0.67	7.50	20.05	3,007	
slab	26.67	16.00	0.67	285.90	42,885	
					1 40 604	tatal saussts (lbs

149,684 total concrete (lbs.)

APPENDIX C STRUCTURAL CALCULATIONS UPLIFT - SEEP C Chemours Fayetteville Works, North Carolina

	2B: Gravel and Carbon (Dry Cont	ents)					
	Content Weight						
	gravel (pcf)	140					
	water weight (pcf)	62.4					
	Carbon (pcf)	30					
Chamber No.	item	length (ft)	width (ft)	height (ft)	vol (ft ³)	weight (lbs)	
2	gravel	10	10	1	100	14,000	
4	gravel	10	10	1	100	14,000	
2	carbon	10	10	3	300	9,000	
4	carbon	10	10	3	300	9,000	
						46,000	total dry content (lbs.)
	2C: Wet Contents						
Chamber No.	item	length (ft)	width (ft)	height (ft)	vol (ft ³)	weight (lbs)	comment
1	free water	4.67	3.99	6.5	121	7,558	
2	gravel pore space water	10	10	1	30	1,872	
2	carbon pore space water	10	10	3	240	14,976	
2	free water	10	10	2.25	225	14,040	
3	free water	10	3.99	5	199.5	12,449	
4	gravel pore space water					1,872	same as 2
4	carbon pore space water					14,976	same as 2
4	free water					14,040	same as 2
5	free water	12.67	3.99	4	202	12,618	
6	free water	3.5	3.99	4	56	3,486	
7	free water	2.48	3.99	1	10	617	_
							total wet content when all

98,504 total wet content when all chambers are full (lbs.)

	Total weight of concrete,
	gravel, carbon, and water
294,188	contents

1.35

TOTAL DOWNWARD FORCE

ESTIMATED FACTOR OF SAFETY (DOWNWARD / UPLIFT)¹

Note:

1) FS_{required} = 1.3 (USACE EM 1110-2-2100, 2005)

2) Uplift calculations are performed considering a worst-case flood event with the flow-through cell fully submerged in water.

3) The factor of safety would be under acceptable USACE limits if the flow-through cells were emptied/drained of dry and wet contents in a submergence event, i.e., changeouts and maintenance events should be performed during dry weather.

BASIN DESIGNATION

The electronic version of this file is being transmitted for the convenience of the client and any modification or edit made to the contents are the client's sole responsibility.

TR0795

Created with PTC Mathcad Express. See www.mathcad.com for more information.

Unsupported Wall Height	H := 42.35 - 34.85 = 7.5	ft	
Unit Width of Wall	b := 1	ft	
Unit Weight of Water	$\gamma_w := 62.4$	pcf	
Unit Weight of Gravel/Riprap	$\gamma_{gravel} := 140$	pcf	
Unit Weight of Concrete	$\gamma_{conc} := 150$	pcf	
Compressive Strength of Concrete	$f'_c := 4000$	psi	
Yield Strength of Reinforcement	$f_y := 60000$	psi	
Minimum Clear Cover for Reinforcement	$c_b := 2$	in.	(ACI 318-14 20.6.1.3.1)

DESIGN CALCULATIONS

The most critical loading case for the design of the reinforced retaining wall is the exterior wall of basin DB adjacent to the riprap armored slope. For this loading case, the full unsupported height of the wall is loaded by the riprap on the exterior and only 1 foot of water on the interior resists the loading. The design calculations below are performed for this loading case and conservatively used for the reinforced concrete design for the remainder of the basin walls.

Load Calculations

For the load calculations the following assumptions are made:

- The riprap on the exterior is assumed to have a flat slope (i.e., slope effects are not considered in the calculation of the lateral earth pressure diagrams)

- The riprap on the exterior of the wall is fully saturated to represent a flood condition

- The wall is assumed to be in an at-rest condition (i.e., minimal deflection)

- The wall acts as a cantilever (i.e., base is fixed and top is free)

- The critical load combination is 1.2D + 1.6L, where D represents the dead load and L represents the live load. The riprap on the exterior of the wall is a dead load and the water saturating the riprap on the exterior and in the basin is a live load

Height of Water in Basin	$h_w := 1$	ft
Effective Friction Angle of Gravel/Riprap	$\phi'_{gravel} := 35$	deg

The electronic version of this file is being transmitted for the convenience of the client and any modification or edit made to the contents are the client's sole responsibility.

Page 2 of 7

At-Rest Lateral Earth Pressure Coefficient

 $K_0 \coloneqq 1 - \sin\left(\phi'_{gravel} \cdot \frac{\pi}{180}\right) = 0.43$ (Jaky, 1944) Exterior of Wall $\sigma'_{v,e} \coloneqq H \cdot (\gamma_{gravel} - \gamma_w) = 582$ Effective Vertical Stress at Base of Wall psf $\sigma_{De} \coloneqq 1.2 \cdot K_0 \cdot \sigma'_{ve} = 297.8$ Horizontal Stress at Base of Wall due to Riprap psf Horizontal Stress at Base of Wall due to Water $\sigma_{L.e} \coloneqq 1.6 \cdot H \cdot \gamma_w = 748.8$ psf $P_{h.e} := 0.5 \cdot (\sigma_{D.e} + \sigma_{L.e}) \cdot H \cdot b = 3924.8$ Resultant Horizontal Load lb $h_{Ph.e} := \frac{H}{3} = 2.5$ Location of Resultant from Base ft Interior of Wall Horitzontal Stress at Base of Wall due to Water $\sigma_{L_i} \coloneqq 1.6 \cdot h_w \cdot \gamma_w = 99.8$ psf $P_{hi} \coloneqq 0.5 \cdot \sigma_{Li} \cdot h_w \cdot b = 49.9$ Resultant Horizontal Load lb $h_{Ph.i} := \frac{h_w}{2} = 0.33$ Location of Resultant from Base ft

Horizontal pressure diagrams and resulting shear force and bending moment diagrams are shown below

The ultimate factored shear force and bending moment occur at the base of the wall and are calculated as below

Ultimate Shear Force	$V_u := P_{h.e} - P_{h.i} = 3874.9$	lb	to the right
Ultimate Bending Moment at Base	$M_u \coloneqq P_{h.e} \bullet h_{Ph.e} - P_{h.i} \bullet h_{Ph.i} = 97$	795.4	lb-ft
<u>Wall Design</u>			clockwise

Initially assume 8-inch thick concrete wall with #4 reinforcement with 12-inch center-to-center spacing on both faces in both vertical and horizontal directions

The electronic version of this file is being transmitted for the convenience of the client and any modification or edit made to the contents are the client's sole responsibility.

Page 3 of 7

REINFORCED CONCRETE SLAB CALCULATIONS Chemours Fayetteville Works, North Carolina

Thickness of Wall	$t_{wall} := \frac{8}{12} = 0.67$ ft	
Diameter of Reinforcement Bar	$d_b := 0.5$ in.	
Effective Depth of Wall	$d_{wall} := t_{wall} \cdot 12 - c_b - \frac{d_b}{2} = 5.75$	in.
Spacing of Bars	$s_b := 12$ in.	
Area of Reinforcement Bar	$A_b := \pi \cdot \frac{d_b^2}{4} = 0.2$ in. ²	
Area of Reinforcement per Foot	$A_{s,v} \coloneqq \frac{A_b}{\frac{s_b}{12}} = 0.196 \qquad \frac{in.^2}{ft}$	$A_{s.h} := A_{s.v}$
Moment Design	12	
Depth of Compression Block	$a \coloneqq \frac{A_{s,v} \cdot f_y}{0.85 \cdot (b \cdot 12) \cdot f_c} = 0.29$	in.
Depth to Neutral Axis	$c := \frac{a}{0.85} = 0.34$	in.
Strain at Extreme Tensile Fiber	$\varepsilon_t := \frac{0.003}{c} \cdot d_{wall} - 0.003 = 0.048$	
Section is tension-controlled because ε_t	t	
Reduction Factor for Bending	$\phi_b := 0.9$	(ACI 318-14 21.2.1)
Area of Flexural Steel Required to Resist Bending Moment	$A_{s.reqd} \coloneqq \frac{M_u \cdot 12}{\phi_b \cdot f_y \cdot \left(d_{wall} - \frac{a}{2}\right)} = 0.38$	$38\frac{in.^2}{ft}$

The area of flexural steel required (0.388 sq. in.) is greater than the area of steel provided by #4 reinforcement spaced at 12 inches (0.196 sq. in.). Therefore, <u>change vertical reinfrocement to</u> <u>#6 reinforcement with 12-inch</u> center-to-center spacing.

Diameter of Reinforcement Bar	$d_b := 0.75$ in.	
Effective Depth of Wall	$d_{wall} := t_{wall} \cdot 12 - c_b - \frac{d_b}{2} = 5.63$	in.
Spacing of Bars	$s_b := 12$ in.	
Area of Reinforcement Bar	$A_b := \pi \cdot \frac{d_b^2}{4} = 0.44$ in. ²	
Area of Reinforcement per Foot	$A_{s.v} \coloneqq \frac{A_b}{\frac{s_b}{12}} = 0.442 \qquad \qquad \frac{in.^2}{ft}$	
Moment Design - 2nd Iteration		
Depth of Compression Block	$a \coloneqq \frac{A_{s.v} \cdot f_y}{0.85 \cdot (b \cdot 12) \cdot f_c} = 0.65$	in.
Depth to Neutral Axis	$c := \frac{a}{0.85} = 0.76$	in.
Strain at Extreme Tensile Fiber	$\varepsilon_t := \frac{0.003}{c} \cdot d_{wall} - 0.003 = 0.019$	
Section is tension-controlled because ε_t	> 0.005	

The electronic version of this file is being transmitted for the convenience of the client and any modification or edit made to the contents are the client's sole responsibility.

Page 4 of 7

Reduction Factor for Bending

REINFORCED CONCRETE SLAB CALCULATIONS Chemours Fayetteville Works, North Carolina

 $\phi_h := 0.9$

(ACI 318-14 21.2.1)

lb

(ACI 318-14 25.4.2.4)

 $A_{s.reqd} \coloneqq \frac{M_u \cdot 12}{\phi_b \cdot f_y \cdot \left(d_{wall} - \frac{a}{2}\right)} = 0.411 \frac{in.^2}{ft}$ Area of Flexural Steel Required to Resist Bending Moment The area of flexural steel required (0.411 sq. in.) is less than the area of steel provided by #6 reinforcement spaced at 12 inches (0.442 sq. in.) Shear Design (ACI 318-14 21.2.1) Reduction Factor for Bending $\phi_{v} := 0.75$ Lightweight Concrete Factor $\lambda := 1$ (for normalweight concrete) $V_c \coloneqq 2 \cdot \lambda \cdot \sqrt{f_c} \cdot (b \cdot 12) \cdot d_{wall} = 8538.1 \qquad lb$ Shear Capacity of Concrete (ACI 318-14 22.5.5.1) $\phi_{v} \cdot \left(V_{c} + 8 \cdot \sqrt{f_{c}} \cdot (b \cdot 12) \cdot d_{wall} \right) = 32018.1 \ lb$

Check Cross-Sectional Dimensions

which is greater than V_{μ} (ACI 318-14 22.5.1.2)

 $\phi_v \cdot V_c = 6403.6 \quad lb \qquad V_u = 3874.9$

Check for Transverse Reinforcement

Because $\phi_v \cdot V_c$ is greater than V_u , no transverse reinforcement is required for shear

Reinforcement Detailing

Minimum Vertical Reinforcement (ACI 318-14 11.6.1)	$A_{s.min.v} := 0.0015 \cdot (b \cdot 12) \cdot t_{wall} = 0.012$	$\frac{in.^2}{ft}$
	$A_{s.min.v} < A_{s.v}$	U U
Minimum Horizontal Reinforcement (ACI 318-14 11.6.1)	$A_{s.min,h} := 0.0025 \cdot (b \cdot 12) \cdot t_{wall} = 0.02$	$\frac{in.^2}{ft}$
	$A_{s.min.h} < A_{s.h}$	5

Note: The reinforcement ratios required for shrinkage and temperature reinforcement (0.0018) are less than the reinforcement ratios above. Shrinkage and temperature reinforcement are satisfied.

Development Length

Modification Factor for Epoxy	$\Psi_e := 1.5$	(ACI 318-14 25.4.2.4)

Modification Factor for Casting Position $\Psi_t := 1$

Straight Development Length for #6 Reinforcement with Spacing Greater Than 2d b and (ACI 318-14 25.4.2.2) Cover Greater Than d_b

for #6 Reinforcement
$$l_{d.6} \coloneqq \left(\frac{f_y \cdot \Psi_t \cdot \Psi_e}{25 \cdot \lambda \cdot \sqrt{f'_c}}\right) \cdot 0.75 = 42.7 \quad in.$$

for #4 Reinforcement
$$l_{d.4} \coloneqq \left(\frac{f_y \cdot \Psi_t \cdot \Psi_e}{25 \cdot \lambda \cdot \sqrt{f'_c}}\right) \cdot 0.5 = 28.5 \quad in.$$

The electronic version of this file is being transmitted for the convenience of the client and any modification or edit made to the contents are the client's sole responsibility.

TR0795

Page 5 of 7

Splice Length			
Tension Lap Splice Length for Class	A Splice	(ACI 318-14 25.5.2.1)	
for #6 Reinforcement	$l_{st.6} := l_{d.6} = 42.7$ in.	greater than 12 in.	
for #4 Reinforcement	$l_{st.4} := l_{d.4} = 28.5$ in.	greater than 12 in.	
Spacing of Reinforcement			
Maximum Spacing of Longitudinal F	Reinforcement	(ACI 318-14 11.7.2.1)	
$s_{max,v} := \min(3 \cdot t_{wall} \cdot 12, 18) = 18$ in.			
Maximum Spacing of Transverse R	einforcement	(ACI 318-14 11.7.3.1)	
	$s_{max.h} := \min\left(3 \cdot t_{wall} \cdot\right)$	12, 18 = 18 in.	
Spacing of 12 inches for vertical and transverse reinforcement is less than 18 inches			
Hook Details for 90-Degree Hooks		(ACI 318-14 25.3.1)	
Inside Bend Diameter #4	$6 \cdot 0.5 = 3$ in.		

 $6 \cdot 0.75 = 4.5$

 $12 \cdot 0.5 = 6$

 $12 \cdot 0.75 = 9$

in.

in.

in.

#6

#4

#6

Straight Extension

The electronic version of this file is being transmitted for the convenience of the client and any modification or edit made to the contents are the client's sole responsibility.

Page 6 of 7 Created with PTC Mathcad Express. See www.mathcad.com for more information.

PRELIMINARY DETAILS

The electronic version of this file is being transmitted for the convenience of the client and any modification or edit made to the contents are the client's sole responsibility.

Created with PTC Mathcad Express. See www.mathcad.com for more information.

The electronic version of this file is being transmitted for the convenience of the client and any modification or edit made to the contents are the client's sole responsibility.

Page 1 of 7

INFLUENT STILLING BASIN (ISB)

DESIGN INPUTS

Unit Width of Slab	b := 1	ft	
Unit Weight of Water	$\gamma_w := 62.4$	pcf	
Unit Weight of Carbon	$\gamma_{carbon} := 88$	pcf	
Unit Weight of Gravel/Riprap	$\gamma_{gravel} := 140$	pcf	
Unit Weight of Concrete	$\gamma_{conc} := 150$	pcf	
Compressive Strength of Concrete	$f'_c := 4000$	psi	
Yield Strength of Reinforcement	$f_y := 60000$	psi	
Minimum Clear Cover for Reinforcement	$c_b := 2$	in.	(ACI 318-14 20.6.1.3.1)
Initially, assume a slab thickness of 8 inche	s		
	8		

ft

Thickness of Slab $t_{slab} := \frac{8}{12} = 0.67$

		12	
sume the foundation	soils are sands with	clave or stiff clave	

Assume the foundation soils are sands with clays or stiff clays

Modulus of Subgrade Reaction	K := 300000	pcf
------------------------------	-------------	-----

CRITICAL SECTIONS

Variations in materials and water levels within adjacent basins causes shear forces and bending moments on the slab. Critical sections were identified based on largest differences between materials and water levels in adjacent basins. Three critical sections were evaluated to identify the ultimate factored shear forces and bending moments.

The critical load combination is assumed to be 1.2D + 1.6L where D represents the dead load and L represents the live load. The concrete, gravel, and carbon are considered as dead loads while the water is considered as a live load.

Section A-A'

For Section A-A', the critical loading represents conditions during the change out of FB-2 where the spent carbon is removed. The maximum water level in FB-1 is considered.

The electronic version of this file is being transmitted for the convenience of the client and any modification or edit made to the contents are the client's sole responsibility.

REINFORCED CONCRETE SLAB CALCULATIONS Chemours Fayetteville Works, North Carolina

Distributed Loads

Full-Height Concrete Wall	$w_{conc} \coloneqq 1.2 \cdot (7.5 \cdot b \cdot \gamma_{conc}) = 1350$	plf
FB-1	$w_{FBI.A} \coloneqq 1.2 \cdot (1 \cdot b \cdot (\gamma_{gravel} - \gamma_w) + 3 \cdot b \cdot (\gamma_{gravel} - \gamma_w)) + 3 \cdot b \cdot (\gamma_{gravel} - \gamma_w) + 3 \cdot b \cdot (\gamma_{gravel} - \gamma_w) + 3 \cdot b \cdot (\gamma_{gravel} - \gamma_w)) + 3 \cdot b \cdot (\gamma_{gravel} - \gamma_w) + 3 \cdot b \cdot (\gamma_{gravel} - \gamma_w) + 3 \cdot b \cdot (\gamma_{gravel} - \gamma_w)) + 3 \cdot b \cdot (\gamma_{gravel} - \gamma_w) + 3 \cdot b \cdot (\gamma_{gravel} - \gamma_w) + 3 \cdot b \cdot (\gamma_{gravel} - \gamma_w)) + 3 \cdot b \cdot (\gamma_{gravel} - \gamma_w) + 3 \cdot b \cdot (\gamma_{gravel} - \gamma_w) + 3 \cdot b \cdot (\gamma_{gravel} - \gamma_w) + 3 \cdot b \cdot (\gamma_{gravel} - \gamma_w)) + 3 \cdot b \cdot (\gamma_{gravel} - \gamma_w) + 3 \cdot b \cdot (\gamma_{gravel}$	$(carbon - \gamma_w)) + 1.6 \cdot (5 \cdot b \cdot \gamma_w)$
	$w_{FBI.A} = 684.5$	plf
ТВ	$w_{TB.A} \coloneqq 1.6 \cdot (5 \cdot b \cdot \gamma_w) = 499.2$	plf
FB-2	$w_{FB2.A} \coloneqq 1.2 \cdot \left(1 \cdot b \cdot \left(\gamma_{gravel} - \gamma_{w}\right)\right) + 1.6 \cdot \left(1 \cdot b \cdot \left(\gamma_{gravel} - \gamma_{w}\right)\right)$	$\cdot b \cdot \gamma_w$
	$w_{FB2.A} = 193$	plf

Section B-B'

For Section B-B', the critical loading represents conditions through the Inlet Chamber, ISB, ESB, and DB. The maximum water levels in the Inlet Chamber and ISB and the minimum water level in the DB are considered. The partial concrete wall separating the Inlet Chamber and ISB is not considered as the loads are transfered to the perimeter walls of the basin.

The electronic version of this file is being transmitted for the convenience of the client and any modification or edit made to the contents are the client's sole responsibility.

Section C-C'

For Section C-C', the critical loading represents conditions during the change out of FB-1 where the spent carbon is removed. The maximum water level in the Inlet Chamber is considered.

Reinforced Concrete Walls and Slab (8"-thick typical)

Distributed Loads

Inlet Chamber	$w_{IC.C} \coloneqq 1.2 \cdot \left(4 \cdot b \cdot \left(\gamma_{gravel} - \gamma_{w}\right)\right) + 1.6 \cdot \left(7.5 \cdot b \cdot \gamma_{w}\right)$	
	$w_{IC.C} = 1121.3$	plf
FB-1	$w_{FBI.C} \coloneqq 1.2 \cdot \left(1 \cdot b \cdot \left(\gamma_{gravel} - \gamma_{w}\right)\right) + $	$1.6 \cdot (1 \cdot b \cdot \gamma_w)$
	$w_{FBI,C} = 193$	plf

The ultimate factored shear force and bending moment occur along Section C-C' within the slab below FB-1.

Ultimate Shear Force	$V_u := 765$	lb
Ultimate Bending Moment at Base	$M_u := 1339.4$	lb-ft

Slab Design

Initially assume #4 reinforcement with 12-inch center-to-center spacing on both faces in both directions

Diameter of Reinforcement Bar	$d_b := 0.5$	in.	
Effective Depth of Wall	$d_{slab} \coloneqq t_{slab} \cdot 12 - c_b - \frac{d_b}{2}$	=5.75 in.	
Spacing of Bars	$s_b := 12$	in.	
Area of Reinforcement Bar	$A_b \coloneqq \boldsymbol{\pi} \cdot \frac{d_b^2}{4} = 0.2$	in. ²	
Area of Reinforcement per Foot	$A_{s.ns} \coloneqq \frac{A_b}{\frac{s_b}{s$	$\frac{in.^2}{ft}$	$A_{s.ew} \coloneqq A_{s.ns}$
	12		

The electronic version of this file is being transmitted for the convenience of the client and any modification or edit made to the contents are the client's sole responsibility.

TR0795

Page 4 of 7

August 2020

Created with PTC Mathcad Express. See www.mathcad.com for more information.

REINFORCED CONCRETE SLAB CALCULATIONS Chemours Fayetteville Works, North Carolina

Moment Design $a \coloneqq \frac{A_{s.ns} \cdot f_y}{0.85 \cdot (b \cdot 12) \cdot f_c} = 0.29$ Depth of Compression Block in. $c := \frac{a}{0.85} = 0.34$ Depth to Neutral Axis in $\varepsilon_t := \frac{0.003}{c} \cdot d_{slab} - 0.003 = 0.048$ Strain at Extreme Tensile Fiber Section is tension-controlled because $\varepsilon_t > 0.005$ (ACI 318-14 21.2.1) Reduction Factor for Bending $\phi_h := 0.9$ $A_{s.reqd} \coloneqq \frac{M_u \cdot 12}{\phi_b \cdot f_y \cdot \left(d_{slab} - \frac{a}{2}\right)} = 0.053 \frac{in.^2}{ft}$ Area of Flexural Steel Required to Resist Bending Moment The area of flexural steel required (0.053 sq. in.) is less than the area of steel provided by #4 reinforcement spaced at 12 inches (0.196 sq. in.) Shear Design $\phi_{y} := 0.75$ (ACI 318-14 21.2.1) Reduction Factor for Bending Lightweight Concrete Factor $\lambda := 1$ (for normalweight concrete) $V_c \coloneqq 2 \cdot \lambda \cdot \sqrt{f_c} \cdot (b \cdot 12) \cdot d_{slab} = 8727.9 \qquad lb$ Shear Capacity of Concrete (ACI 318-14 22.5.5.1) $\phi_{v} \cdot \left(V_{c} + 8 \cdot \sqrt{f_{c}} \cdot (b \cdot 12) \cdot d_{slab} \right) = 32729.6 \ lb$ Check Cross-Sectional Dimensions which is greater than V_u (ACI 318-14 22.5.1.2) $\phi_v \cdot V_c = 6545.9 \quad lb \qquad V_u = 765$ Check for Transverse Reinforcement lb Because $\phi_v \cdot V_c$ is greater than V_u , no transverse reinforcement is required for shear Reinforcement Detailing $A_{s.min} := 0.0018 \cdot (b \cdot 12) \cdot t_{slab} = 0.014 \qquad \frac{in.^2}{ft}$ Minimum Reinforcement (ACI 318-14 8.6.1.1) $A_{s\min v} < A_{s\min v} < a_{s\min v} < A_{s\min v} < a_{s\min v}$

<u>Note</u>: The reinforcement ratios required for shrinkage and temperature reinforcement (0.0018) equal the reinforcement ratios above. Shrinkage and temperature reinforcement are satisfied.

Development Length

Modification Factor for Epoxy	$\Psi_e \coloneqq 1.5$	(ACI 318-14 25.4.2.4)
Modification Factor for Casting Position	$\Psi_t := 1$	(ACI 318-14 25.4.2.4)
Straight Development Length for #6 R	einforcement with Spacing Greate	r Than 2d ih and

Cover Greater Than d_b (ACI 318-14 25.4.2.2)

The electronic version of this file is being transmitted for the convenience of the client and any modification or edit made to the contents are the client's sole responsibility.

Page 5 of 7

REINFORCED CONCRETE SLAB CALCULATIONS Chemours Fayetteville Works, North Carolina

(ACI 318-14 8.7.2.2)

(ACI 318-14 25.3.1)

for #4 Reinforcement	$l_{d.4} := \left(\frac{f_y \cdot \Psi_t \cdot \Psi_e}{25 \cdot \lambda \cdot \sqrt{f_c}}\right) \cdot 0.5 =$	=28.5	in.
Splice Length			
Tension Lap Splice Length for Class A Splice			(ACI 318-14 25.5.2.1)
for #4 Reinforcement	$l_{st.4} := l_{d.4} = 28.5$ in.	greate	r than 12 in.
Spacing of Reinforcement			

Maximum Spacing of Longitudinal Reinforcement

$$s_{max} := \min(2 \cdot t_{slab} \cdot 12, 18) = 16$$
 in.

Spacing of 12 inches for both directions of reinforcement is less than 16 inches

Hook Details for 90-Degree Hooks

Inside Bend Diameter	#4	$6 \cdot 0.5 = 3$	in.
Straight Extension	#4	$12 \cdot 0.5 = 6$	in.

PRELIMINARY DETAILS

Plan View (NOT TO SCALE)

#4 @ 12" BOTH FACES EACH DIRECTION (TYP)

The electronic version of this file is being transmitted for the convenience of the client and any modification or edit made to the contents are the client's sole responsibility.

TR0795

Section View (NOT TO SCALE)

The electronic version of this file is being transmitted for the convenience of the client and any modification or edit made to the contents are the client's sole responsibility.